| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 |  |-  V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 2 |  | simpllr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> X = { j e. ( PrmIdeal ` R ) | l C_ j } ) | 
						
							| 3 |  | simpr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) | 
						
							| 4 | 2 3 | uneq12d |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> ( X u. Y ) = ( { j e. ( PrmIdeal ` R ) | l C_ j } u. { j e. ( PrmIdeal ` R ) | k C_ j } ) ) | 
						
							| 5 |  | unrab |  |-  ( { j e. ( PrmIdeal ` R ) | l C_ j } u. { j e. ( PrmIdeal ` R ) | k C_ j } ) = { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } | 
						
							| 6 |  | eqid |  |-  ( IDLsrg ` R ) = ( IDLsrg ` R ) | 
						
							| 7 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 8 |  | eqid |  |-  ( .r ` ( IDLsrg ` R ) ) = ( .r ` ( IDLsrg ` R ) ) | 
						
							| 9 |  | simpll |  |-  ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> R e. CRing ) | 
						
							| 10 | 9 | crngringd |  |-  ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> R e. Ring ) | 
						
							| 11 |  | simplr |  |-  ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> l e. ( LIdeal ` R ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> k e. ( LIdeal ` R ) ) | 
						
							| 13 | 6 7 8 10 11 12 | idlsrgmulrcl |  |-  ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) e. ( LIdeal ` R ) ) | 
						
							| 14 |  | sseq1 |  |-  ( i = ( l ( .r ` ( IDLsrg ` R ) ) k ) -> ( i C_ j <-> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) ) | 
						
							| 15 | 14 | rabbidv |  |-  ( i = ( l ( .r ` ( IDLsrg ` R ) ) k ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j } ) | 
						
							| 16 | 15 | eqeq2d |  |-  ( i = ( l ( .r ` ( IDLsrg ` R ) ) k ) -> ( { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | i C_ j } <-> { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j } ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ i = ( l ( .r ` ( IDLsrg ` R ) ) k ) ) -> ( { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | i C_ j } <-> { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j } ) ) | 
						
							| 18 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 19 | 9 | ad2antrr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> R e. CRing ) | 
						
							| 20 | 11 | ad2antrr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> l e. ( LIdeal ` R ) ) | 
						
							| 21 | 12 | ad2antrr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> k e. ( LIdeal ` R ) ) | 
						
							| 22 | 6 7 8 18 19 20 21 | idlsrgmulrss1 |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ l ) | 
						
							| 23 |  | simpr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> l C_ j ) | 
						
							| 24 | 22 23 | sstrd |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) | 
						
							| 25 | 10 | ad2antrr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> R e. Ring ) | 
						
							| 26 | 11 | ad2antrr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> l e. ( LIdeal ` R ) ) | 
						
							| 27 | 12 | ad2antrr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> k e. ( LIdeal ` R ) ) | 
						
							| 28 | 6 7 8 18 25 26 27 | idlsrgmulrss2 |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ k ) | 
						
							| 29 |  | simpr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> k C_ j ) | 
						
							| 30 | 28 29 | sstrd |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) | 
						
							| 31 | 24 30 | jaodan |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l C_ j \/ k C_ j ) ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) | 
						
							| 32 |  | eqid |  |-  ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) | 
						
							| 33 | 10 | ad2antrr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> R e. Ring ) | 
						
							| 34 |  | simplr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> j e. ( PrmIdeal ` R ) ) | 
						
							| 35 | 11 | ad2antrr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> l e. ( LIdeal ` R ) ) | 
						
							| 36 | 12 | ad2antrr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> k e. ( LIdeal ` R ) ) | 
						
							| 37 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 38 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 39 | 37 7 | lidlss |  |-  ( l e. ( LIdeal ` R ) -> l C_ ( Base ` R ) ) | 
						
							| 40 | 35 39 | syl |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> l C_ ( Base ` R ) ) | 
						
							| 41 | 37 7 | lidlss |  |-  ( k e. ( LIdeal ` R ) -> k C_ ( Base ` R ) ) | 
						
							| 42 | 36 41 | syl |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> k C_ ( Base ` R ) ) | 
						
							| 43 | 37 38 32 33 40 42 | ringlsmss |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ ( Base ` R ) ) | 
						
							| 44 |  | eqid |  |-  ( RSpan ` R ) = ( RSpan ` R ) | 
						
							| 45 | 44 37 | rspssid |  |-  ( ( R e. Ring /\ ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ ( Base ` R ) ) -> ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ ( ( RSpan ` R ) ` ( l ( LSSum ` ( mulGrp ` R ) ) k ) ) ) | 
						
							| 46 | 33 43 45 | syl2anc |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ ( ( RSpan ` R ) ` ( l ( LSSum ` ( mulGrp ` R ) ) k ) ) ) | 
						
							| 47 | 6 7 8 38 32 33 35 36 | idlsrgmulrval |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) = ( ( RSpan ` R ) ` ( l ( LSSum ` ( mulGrp ` R ) ) k ) ) ) | 
						
							| 48 | 46 47 | sseqtrrd |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ ( l ( .r ` ( IDLsrg ` R ) ) k ) ) | 
						
							| 49 |  | simpr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) | 
						
							| 50 | 48 49 | sstrd |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ j ) | 
						
							| 51 | 32 33 34 35 36 50 | idlmulssprm |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l C_ j \/ k C_ j ) ) | 
						
							| 52 | 31 51 | impbida |  |-  ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) -> ( ( l C_ j \/ k C_ j ) <-> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) ) | 
						
							| 53 | 52 | rabbidva |  |-  ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j } ) | 
						
							| 54 | 13 17 53 | rspcedvd |  |-  ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> E. i e. ( LIdeal ` R ) { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 55 |  | fvex |  |-  ( PrmIdeal ` R ) e. _V | 
						
							| 56 | 55 | rabex |  |-  { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } e. _V | 
						
							| 57 | 56 | a1i |  |-  ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } e. _V ) | 
						
							| 58 | 1 54 57 | elrnmptd |  |-  ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } e. ran V ) | 
						
							| 59 | 5 58 | eqeltrid |  |-  ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> ( { j e. ( PrmIdeal ` R ) | l C_ j } u. { j e. ( PrmIdeal ` R ) | k C_ j } ) e. ran V ) | 
						
							| 60 | 59 | adantlr |  |-  ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) -> ( { j e. ( PrmIdeal ` R ) | l C_ j } u. { j e. ( PrmIdeal ` R ) | k C_ j } ) e. ran V ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> ( { j e. ( PrmIdeal ` R ) | l C_ j } u. { j e. ( PrmIdeal ` R ) | k C_ j } ) e. ran V ) | 
						
							| 62 | 4 61 | eqeltrd |  |-  ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> ( X u. Y ) e. ran V ) | 
						
							| 63 | 62 | adantl4r |  |-  ( ( ( ( ( ( R e. CRing /\ Y e. ran V ) /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> ( X u. Y ) e. ran V ) | 
						
							| 64 | 55 | rabex |  |-  { j e. ( PrmIdeal ` R ) | i C_ j } e. _V | 
						
							| 65 | 1 64 | elrnmpti |  |-  ( Y e. ran V <-> E. i e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 66 |  | sseq1 |  |-  ( i = k -> ( i C_ j <-> k C_ j ) ) | 
						
							| 67 | 66 | rabbidv |  |-  ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | k C_ j } ) | 
						
							| 68 | 67 | eqeq2d |  |-  ( i = k -> ( Y = { j e. ( PrmIdeal ` R ) | i C_ j } <-> Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) ) | 
						
							| 69 | 68 | cbvrexvw |  |-  ( E. i e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | i C_ j } <-> E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) | 
						
							| 70 |  | biid |  |-  ( E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } <-> E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) | 
						
							| 71 | 65 69 70 | 3bitri |  |-  ( Y e. ran V <-> E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) | 
						
							| 72 | 71 | biimpi |  |-  ( Y e. ran V -> E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) | 
						
							| 73 | 72 | ad3antlr |  |-  ( ( ( ( R e. CRing /\ Y e. ran V ) /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) -> E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) | 
						
							| 74 | 63 73 | r19.29a |  |-  ( ( ( ( R e. CRing /\ Y e. ran V ) /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) -> ( X u. Y ) e. ran V ) | 
						
							| 75 | 74 | adantl3r |  |-  ( ( ( ( ( R e. CRing /\ X e. ran V ) /\ Y e. ran V ) /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) -> ( X u. Y ) e. ran V ) | 
						
							| 76 | 1 64 | elrnmpti |  |-  ( X e. ran V <-> E. i e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 77 |  | sseq1 |  |-  ( i = l -> ( i C_ j <-> l C_ j ) ) | 
						
							| 78 | 77 | rabbidv |  |-  ( i = l -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | l C_ j } ) | 
						
							| 79 | 78 | eqeq2d |  |-  ( i = l -> ( X = { j e. ( PrmIdeal ` R ) | i C_ j } <-> X = { j e. ( PrmIdeal ` R ) | l C_ j } ) ) | 
						
							| 80 | 79 | cbvrexvw |  |-  ( E. i e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | i C_ j } <-> E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } ) | 
						
							| 81 |  | biid |  |-  ( E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } <-> E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } ) | 
						
							| 82 | 76 80 81 | 3bitri |  |-  ( X e. ran V <-> E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } ) | 
						
							| 83 | 82 | biimpi |  |-  ( X e. ran V -> E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } ) | 
						
							| 84 | 83 | ad2antlr |  |-  ( ( ( R e. CRing /\ X e. ran V ) /\ Y e. ran V ) -> E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } ) | 
						
							| 85 | 75 84 | r19.29a |  |-  ( ( ( R e. CRing /\ X e. ran V ) /\ Y e. ran V ) -> ( X u. Y ) e. ran V ) | 
						
							| 86 | 85 | 3impa |  |-  ( ( R e. CRing /\ X e. ran V /\ Y e. ran V ) -> ( X u. Y ) e. ran V ) |