Step |
Hyp |
Ref |
Expression |
1 |
|
zarclsx.1 |
|- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) |
2 |
|
simpllr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> X = { j e. ( PrmIdeal ` R ) | l C_ j } ) |
3 |
|
simpr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) |
4 |
2 3
|
uneq12d |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> ( X u. Y ) = ( { j e. ( PrmIdeal ` R ) | l C_ j } u. { j e. ( PrmIdeal ` R ) | k C_ j } ) ) |
5 |
|
unrab |
|- ( { j e. ( PrmIdeal ` R ) | l C_ j } u. { j e. ( PrmIdeal ` R ) | k C_ j } ) = { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } |
6 |
|
eqid |
|- ( IDLsrg ` R ) = ( IDLsrg ` R ) |
7 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
8 |
|
eqid |
|- ( .r ` ( IDLsrg ` R ) ) = ( .r ` ( IDLsrg ` R ) ) |
9 |
|
simpll |
|- ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> R e. CRing ) |
10 |
9
|
crngringd |
|- ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> R e. Ring ) |
11 |
|
simplr |
|- ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> l e. ( LIdeal ` R ) ) |
12 |
|
simpr |
|- ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> k e. ( LIdeal ` R ) ) |
13 |
6 7 8 10 11 12
|
idlsrgmulrcl |
|- ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) e. ( LIdeal ` R ) ) |
14 |
|
sseq1 |
|- ( i = ( l ( .r ` ( IDLsrg ` R ) ) k ) -> ( i C_ j <-> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) ) |
15 |
14
|
rabbidv |
|- ( i = ( l ( .r ` ( IDLsrg ` R ) ) k ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j } ) |
16 |
15
|
eqeq2d |
|- ( i = ( l ( .r ` ( IDLsrg ` R ) ) k ) -> ( { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | i C_ j } <-> { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j } ) ) |
17 |
16
|
adantl |
|- ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ i = ( l ( .r ` ( IDLsrg ` R ) ) k ) ) -> ( { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | i C_ j } <-> { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j } ) ) |
18 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
19 |
9
|
ad2antrr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> R e. CRing ) |
20 |
11
|
ad2antrr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> l e. ( LIdeal ` R ) ) |
21 |
12
|
ad2antrr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> k e. ( LIdeal ` R ) ) |
22 |
6 7 8 18 19 20 21
|
idlsrgmulrss1 |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ l ) |
23 |
|
simpr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> l C_ j ) |
24 |
22 23
|
sstrd |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ l C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) |
25 |
10
|
ad2antrr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> R e. Ring ) |
26 |
11
|
ad2antrr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> l e. ( LIdeal ` R ) ) |
27 |
12
|
ad2antrr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> k e. ( LIdeal ` R ) ) |
28 |
6 7 8 18 25 26 27
|
idlsrgmulrss2 |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ k ) |
29 |
|
simpr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> k C_ j ) |
30 |
28 29
|
sstrd |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ k C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) |
31 |
24 30
|
jaodan |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l C_ j \/ k C_ j ) ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) |
32 |
|
eqid |
|- ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) |
33 |
10
|
ad2antrr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> R e. Ring ) |
34 |
|
simplr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> j e. ( PrmIdeal ` R ) ) |
35 |
11
|
ad2antrr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> l e. ( LIdeal ` R ) ) |
36 |
12
|
ad2antrr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> k e. ( LIdeal ` R ) ) |
37 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
38 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
39 |
37 7
|
lidlss |
|- ( l e. ( LIdeal ` R ) -> l C_ ( Base ` R ) ) |
40 |
35 39
|
syl |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> l C_ ( Base ` R ) ) |
41 |
37 7
|
lidlss |
|- ( k e. ( LIdeal ` R ) -> k C_ ( Base ` R ) ) |
42 |
36 41
|
syl |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> k C_ ( Base ` R ) ) |
43 |
37 38 32 33 40 42
|
ringlsmss |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ ( Base ` R ) ) |
44 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
45 |
44 37
|
rspssid |
|- ( ( R e. Ring /\ ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ ( Base ` R ) ) -> ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ ( ( RSpan ` R ) ` ( l ( LSSum ` ( mulGrp ` R ) ) k ) ) ) |
46 |
33 43 45
|
syl2anc |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ ( ( RSpan ` R ) ` ( l ( LSSum ` ( mulGrp ` R ) ) k ) ) ) |
47 |
6 7 8 38 32 33 35 36
|
idlsrgmulrval |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) = ( ( RSpan ` R ) ` ( l ( LSSum ` ( mulGrp ` R ) ) k ) ) ) |
48 |
46 47
|
sseqtrrd |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ ( l ( .r ` ( IDLsrg ` R ) ) k ) ) |
49 |
|
simpr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) |
50 |
48 49
|
sstrd |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l ( LSSum ` ( mulGrp ` R ) ) k ) C_ j ) |
51 |
32 33 34 35 36 50
|
idlmulssprm |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) /\ ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) -> ( l C_ j \/ k C_ j ) ) |
52 |
31 51
|
impbida |
|- ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ j e. ( PrmIdeal ` R ) ) -> ( ( l C_ j \/ k C_ j ) <-> ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j ) ) |
53 |
52
|
rabbidva |
|- ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | ( l ( .r ` ( IDLsrg ` R ) ) k ) C_ j } ) |
54 |
13 17 53
|
rspcedvd |
|- ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> E. i e. ( LIdeal ` R ) { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } = { j e. ( PrmIdeal ` R ) | i C_ j } ) |
55 |
|
fvex |
|- ( PrmIdeal ` R ) e. _V |
56 |
55
|
rabex |
|- { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } e. _V |
57 |
56
|
a1i |
|- ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } e. _V ) |
58 |
1 54 57
|
elrnmptd |
|- ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> { j e. ( PrmIdeal ` R ) | ( l C_ j \/ k C_ j ) } e. ran V ) |
59 |
5 58
|
eqeltrid |
|- ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) -> ( { j e. ( PrmIdeal ` R ) | l C_ j } u. { j e. ( PrmIdeal ` R ) | k C_ j } ) e. ran V ) |
60 |
59
|
adantlr |
|- ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) -> ( { j e. ( PrmIdeal ` R ) | l C_ j } u. { j e. ( PrmIdeal ` R ) | k C_ j } ) e. ran V ) |
61 |
60
|
adantr |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> ( { j e. ( PrmIdeal ` R ) | l C_ j } u. { j e. ( PrmIdeal ` R ) | k C_ j } ) e. ran V ) |
62 |
4 61
|
eqeltrd |
|- ( ( ( ( ( R e. CRing /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> ( X u. Y ) e. ran V ) |
63 |
62
|
adantl4r |
|- ( ( ( ( ( ( R e. CRing /\ Y e. ran V ) /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) /\ k e. ( LIdeal ` R ) ) /\ Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) -> ( X u. Y ) e. ran V ) |
64 |
55
|
rabex |
|- { j e. ( PrmIdeal ` R ) | i C_ j } e. _V |
65 |
1 64
|
elrnmpti |
|- ( Y e. ran V <-> E. i e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | i C_ j } ) |
66 |
|
sseq1 |
|- ( i = k -> ( i C_ j <-> k C_ j ) ) |
67 |
66
|
rabbidv |
|- ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | k C_ j } ) |
68 |
67
|
eqeq2d |
|- ( i = k -> ( Y = { j e. ( PrmIdeal ` R ) | i C_ j } <-> Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) ) |
69 |
68
|
cbvrexvw |
|- ( E. i e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | i C_ j } <-> E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) |
70 |
|
biid |
|- ( E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } <-> E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) |
71 |
65 69 70
|
3bitri |
|- ( Y e. ran V <-> E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) |
72 |
71
|
biimpi |
|- ( Y e. ran V -> E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) |
73 |
72
|
ad3antlr |
|- ( ( ( ( R e. CRing /\ Y e. ran V ) /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) -> E. k e. ( LIdeal ` R ) Y = { j e. ( PrmIdeal ` R ) | k C_ j } ) |
74 |
63 73
|
r19.29a |
|- ( ( ( ( R e. CRing /\ Y e. ran V ) /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) -> ( X u. Y ) e. ran V ) |
75 |
74
|
adantl3r |
|- ( ( ( ( ( R e. CRing /\ X e. ran V ) /\ Y e. ran V ) /\ l e. ( LIdeal ` R ) ) /\ X = { j e. ( PrmIdeal ` R ) | l C_ j } ) -> ( X u. Y ) e. ran V ) |
76 |
1 64
|
elrnmpti |
|- ( X e. ran V <-> E. i e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | i C_ j } ) |
77 |
|
sseq1 |
|- ( i = l -> ( i C_ j <-> l C_ j ) ) |
78 |
77
|
rabbidv |
|- ( i = l -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | l C_ j } ) |
79 |
78
|
eqeq2d |
|- ( i = l -> ( X = { j e. ( PrmIdeal ` R ) | i C_ j } <-> X = { j e. ( PrmIdeal ` R ) | l C_ j } ) ) |
80 |
79
|
cbvrexvw |
|- ( E. i e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | i C_ j } <-> E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } ) |
81 |
|
biid |
|- ( E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } <-> E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } ) |
82 |
76 80 81
|
3bitri |
|- ( X e. ran V <-> E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } ) |
83 |
82
|
biimpi |
|- ( X e. ran V -> E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } ) |
84 |
83
|
ad2antlr |
|- ( ( ( R e. CRing /\ X e. ran V ) /\ Y e. ran V ) -> E. l e. ( LIdeal ` R ) X = { j e. ( PrmIdeal ` R ) | l C_ j } ) |
85 |
75 84
|
r19.29a |
|- ( ( ( R e. CRing /\ X e. ran V ) /\ Y e. ran V ) -> ( X u. Y ) e. ran V ) |
86 |
85
|
3impa |
|- ( ( R e. CRing /\ X e. ran V /\ Y e. ran V ) -> ( X u. Y ) e. ran V ) |