Metamath Proof Explorer


Theorem zarclsiin

Description: In a Zariski topology, the intersection of the closures of a family of ideals is the closure of the span of their union. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zarclsx.1 V = i LIdeal R j PrmIdeal R | i j
zarclsiin.1 K = RSpan R
Assertion zarclsiin R Ring T LIdeal R T l T V l = V K T

Proof

Step Hyp Ref Expression
1 zarclsx.1 V = i LIdeal R j PrmIdeal R | i j
2 zarclsiin.1 K = RSpan R
3 sseq2 j = p K T j K T p
4 simpl3 R Ring T LIdeal R T p l T V l T
5 1 a1i R Ring T LIdeal R T l T V = i LIdeal R j PrmIdeal R | i j
6 sseq1 i = l i j l j
7 6 rabbidv i = l j PrmIdeal R | i j = j PrmIdeal R | l j
8 7 adantl R Ring T LIdeal R T l T i = l j PrmIdeal R | i j = j PrmIdeal R | l j
9 simp2 R Ring T LIdeal R T T LIdeal R
10 9 sselda R Ring T LIdeal R T l T l LIdeal R
11 fvex PrmIdeal R V
12 11 rabex j PrmIdeal R | l j V
13 12 a1i R Ring T LIdeal R T l T j PrmIdeal R | l j V
14 5 8 10 13 fvmptd R Ring T LIdeal R T l T V l = j PrmIdeal R | l j
15 ssrab2 j PrmIdeal R | l j PrmIdeal R
16 15 a1i R Ring T LIdeal R T l T j PrmIdeal R | l j PrmIdeal R
17 14 16 eqsstrd R Ring T LIdeal R T l T V l PrmIdeal R
18 17 sseld R Ring T LIdeal R T l T p V l p PrmIdeal R
19 18 ralimdva R Ring T LIdeal R T l T p V l l T p PrmIdeal R
20 eliin p V p l T V l l T p V l
21 20 elv p l T V l l T p V l
22 21 biimpi p l T V l l T p V l
23 19 22 impel R Ring T LIdeal R T p l T V l l T p PrmIdeal R
24 rspn0 T l T p PrmIdeal R p PrmIdeal R
25 24 imp T l T p PrmIdeal R p PrmIdeal R
26 4 23 25 syl2anc R Ring T LIdeal R T p l T V l p PrmIdeal R
27 simp1 R Ring T LIdeal R T R Ring
28 27 adantr R Ring T LIdeal R T p l T V l R Ring
29 prmidlidl R Ring p PrmIdeal R p LIdeal R
30 28 26 29 syl2anc R Ring T LIdeal R T p l T V l p LIdeal R
31 nfv l R Ring T LIdeal R T
32 nfcv _ l p
33 nfii1 _ l l T V l
34 32 33 nfel l p l T V l
35 31 34 nfan l R Ring T LIdeal R T p l T V l
36 22 a1i R Ring T LIdeal R T p l T V l l T p V l
37 36 imp R Ring T LIdeal R T p l T V l l T p V l
38 37 adantr R Ring T LIdeal R T p l T V l l T l T p V l
39 simpr R Ring T LIdeal R T p l T V l l T l T
40 rspa l T p V l l T p V l
41 38 39 40 syl2anc R Ring T LIdeal R T p l T V l l T p V l
42 14 adantlr R Ring T LIdeal R T p l T V l l T V l = j PrmIdeal R | l j
43 41 42 eleqtrd R Ring T LIdeal R T p l T V l l T p j PrmIdeal R | l j
44 sseq2 j = p l j l p
45 44 elrab p j PrmIdeal R | l j p PrmIdeal R l p
46 43 45 sylib R Ring T LIdeal R T p l T V l l T p PrmIdeal R l p
47 46 simprd R Ring T LIdeal R T p l T V l l T l p
48 47 ex R Ring T LIdeal R T p l T V l l T l p
49 35 48 ralrimi R Ring T LIdeal R T p l T V l l T l p
50 unissb T p l T l p
51 49 50 sylibr R Ring T LIdeal R T p l T V l T p
52 eqid LIdeal R = LIdeal R
53 2 52 rspssp R Ring p LIdeal R T p K T p
54 28 30 51 53 syl3anc R Ring T LIdeal R T p l T V l K T p
55 3 26 54 elrabd R Ring T LIdeal R T p l T V l p j PrmIdeal R | K T j
56 1 a1i R Ring T LIdeal R T V = i LIdeal R j PrmIdeal R | i j
57 sseq1 i = K T i j K T j
58 57 rabbidv i = K T j PrmIdeal R | i j = j PrmIdeal R | K T j
59 58 adantl R Ring T LIdeal R T i = K T j PrmIdeal R | i j = j PrmIdeal R | K T j
60 9 sselda R Ring T LIdeal R T i T i LIdeal R
61 eqid Base R = Base R
62 61 52 lidlss i LIdeal R i Base R
63 60 62 syl R Ring T LIdeal R T i T i Base R
64 63 ralrimiva R Ring T LIdeal R T i T i Base R
65 unissb T Base R i T i Base R
66 64 65 sylibr R Ring T LIdeal R T T Base R
67 2 61 52 rspcl R Ring T Base R K T LIdeal R
68 27 66 67 syl2anc R Ring T LIdeal R T K T LIdeal R
69 11 rabex j PrmIdeal R | K T j V
70 69 a1i R Ring T LIdeal R T j PrmIdeal R | K T j V
71 56 59 68 70 fvmptd R Ring T LIdeal R T V K T = j PrmIdeal R | K T j
72 71 eleq2d R Ring T LIdeal R T p V K T p j PrmIdeal R | K T j
73 72 adantr R Ring T LIdeal R T p l T V l p V K T p j PrmIdeal R | K T j
74 55 73 mpbird R Ring T LIdeal R T p l T V l p V K T
75 72 biimpa R Ring T LIdeal R T p V K T p j PrmIdeal R | K T j
76 3 elrab p j PrmIdeal R | K T j p PrmIdeal R K T p
77 75 76 sylib R Ring T LIdeal R T p V K T p PrmIdeal R K T p
78 77 simpld R Ring T LIdeal R T p V K T p PrmIdeal R
79 78 adantr R Ring T LIdeal R T p V K T l T p PrmIdeal R
80 elssuni l T l T
81 80 adantl R Ring T LIdeal R T p V K T l T l T
82 simpll R Ring T LIdeal R T p V K T l T R Ring T LIdeal R T
83 2 61 rspssid R Ring T Base R T K T
84 27 66 83 syl2anc R Ring T LIdeal R T T K T
85 82 84 syl R Ring T LIdeal R T p V K T l T T K T
86 81 85 sstrd R Ring T LIdeal R T p V K T l T l K T
87 77 simprd R Ring T LIdeal R T p V K T K T p
88 87 adantr R Ring T LIdeal R T p V K T l T K T p
89 86 88 sstrd R Ring T LIdeal R T p V K T l T l p
90 44 79 89 elrabd R Ring T LIdeal R T p V K T l T p j PrmIdeal R | l j
91 9 adantr R Ring T LIdeal R T p V K T T LIdeal R
92 91 sselda R Ring T LIdeal R T p V K T l T l LIdeal R
93 1 a1i R Ring T LIdeal R T l LIdeal R V = i LIdeal R j PrmIdeal R | i j
94 7 adantl R Ring T LIdeal R T l LIdeal R i = l j PrmIdeal R | i j = j PrmIdeal R | l j
95 simpr R Ring T LIdeal R T l LIdeal R l LIdeal R
96 12 a1i R Ring T LIdeal R T l LIdeal R j PrmIdeal R | l j V
97 93 94 95 96 fvmptd R Ring T LIdeal R T l LIdeal R V l = j PrmIdeal R | l j
98 82 92 97 syl2anc R Ring T LIdeal R T p V K T l T V l = j PrmIdeal R | l j
99 90 98 eleqtrrd R Ring T LIdeal R T p V K T l T p V l
100 99 ralrimiva R Ring T LIdeal R T p V K T l T p V l
101 21 a1i R Ring T LIdeal R T p V K T p l T V l l T p V l
102 100 101 mpbird R Ring T LIdeal R T p V K T p l T V l
103 74 102 impbida R Ring T LIdeal R T p l T V l p V K T
104 103 eqrdv R Ring T LIdeal R T l T V l = V K T