| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 |  | 
						
							| 2 |  | zarclsiin.1 |  | 
						
							| 3 |  | sseq2 |  | 
						
							| 4 |  | simpl3 |  | 
						
							| 5 | 1 | a1i |  | 
						
							| 6 |  | sseq1 |  | 
						
							| 7 | 6 | rabbidv |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | simp2 |  | 
						
							| 10 | 9 | sselda |  | 
						
							| 11 |  | fvex |  | 
						
							| 12 | 11 | rabex |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 | 5 8 10 13 | fvmptd |  | 
						
							| 15 |  | ssrab2 |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 | 14 16 | eqsstrd |  | 
						
							| 18 | 17 | sseld |  | 
						
							| 19 | 18 | ralimdva |  | 
						
							| 20 |  | eliin |  | 
						
							| 21 | 20 | elv |  | 
						
							| 22 | 21 | biimpi |  | 
						
							| 23 | 19 22 | impel |  | 
						
							| 24 |  | rspn0 |  | 
						
							| 25 | 24 | imp |  | 
						
							| 26 | 4 23 25 | syl2anc |  | 
						
							| 27 |  | simp1 |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 |  | prmidlidl |  | 
						
							| 30 | 28 26 29 | syl2anc |  | 
						
							| 31 |  | nfv |  | 
						
							| 32 |  | nfcv |  | 
						
							| 33 |  | nfii1 |  | 
						
							| 34 | 32 33 | nfel |  | 
						
							| 35 | 31 34 | nfan |  | 
						
							| 36 | 22 | a1i |  | 
						
							| 37 | 36 | imp |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 |  | simpr |  | 
						
							| 40 |  | rspa |  | 
						
							| 41 | 38 39 40 | syl2anc |  | 
						
							| 42 | 14 | adantlr |  | 
						
							| 43 | 41 42 | eleqtrd |  | 
						
							| 44 |  | sseq2 |  | 
						
							| 45 | 44 | elrab |  | 
						
							| 46 | 43 45 | sylib |  | 
						
							| 47 | 46 | simprd |  | 
						
							| 48 | 47 | ex |  | 
						
							| 49 | 35 48 | ralrimi |  | 
						
							| 50 |  | unissb |  | 
						
							| 51 | 49 50 | sylibr |  | 
						
							| 52 |  | eqid |  | 
						
							| 53 | 2 52 | rspssp |  | 
						
							| 54 | 28 30 51 53 | syl3anc |  | 
						
							| 55 | 3 26 54 | elrabd |  | 
						
							| 56 | 1 | a1i |  | 
						
							| 57 |  | sseq1 |  | 
						
							| 58 | 57 | rabbidv |  | 
						
							| 59 | 58 | adantl |  | 
						
							| 60 | 9 | sselda |  | 
						
							| 61 |  | eqid |  | 
						
							| 62 | 61 52 | lidlss |  | 
						
							| 63 | 60 62 | syl |  | 
						
							| 64 | 63 | ralrimiva |  | 
						
							| 65 |  | unissb |  | 
						
							| 66 | 64 65 | sylibr |  | 
						
							| 67 | 2 61 52 | rspcl |  | 
						
							| 68 | 27 66 67 | syl2anc |  | 
						
							| 69 | 11 | rabex |  | 
						
							| 70 | 69 | a1i |  | 
						
							| 71 | 56 59 68 70 | fvmptd |  | 
						
							| 72 | 71 | eleq2d |  | 
						
							| 73 | 72 | adantr |  | 
						
							| 74 | 55 73 | mpbird |  | 
						
							| 75 | 72 | biimpa |  | 
						
							| 76 | 3 | elrab |  | 
						
							| 77 | 75 76 | sylib |  | 
						
							| 78 | 77 | simpld |  | 
						
							| 79 | 78 | adantr |  | 
						
							| 80 |  | elssuni |  | 
						
							| 81 | 80 | adantl |  | 
						
							| 82 |  | simpll |  | 
						
							| 83 | 2 61 | rspssid |  | 
						
							| 84 | 27 66 83 | syl2anc |  | 
						
							| 85 | 82 84 | syl |  | 
						
							| 86 | 81 85 | sstrd |  | 
						
							| 87 | 77 | simprd |  | 
						
							| 88 | 87 | adantr |  | 
						
							| 89 | 86 88 | sstrd |  | 
						
							| 90 | 44 79 89 | elrabd |  | 
						
							| 91 | 9 | adantr |  | 
						
							| 92 | 91 | sselda |  | 
						
							| 93 | 1 | a1i |  | 
						
							| 94 | 7 | adantl |  | 
						
							| 95 |  | simpr |  | 
						
							| 96 | 12 | a1i |  | 
						
							| 97 | 93 94 95 96 | fvmptd |  | 
						
							| 98 | 82 92 97 | syl2anc |  | 
						
							| 99 | 90 98 | eleqtrrd |  | 
						
							| 100 | 99 | ralrimiva |  | 
						
							| 101 | 21 | a1i |  | 
						
							| 102 | 100 101 | mpbird |  | 
						
							| 103 | 74 102 | impbida |  | 
						
							| 104 | 103 | eqrdv |  |