| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 | ⊢ 𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 2 |  | zarclsiin.1 | ⊢ 𝐾  =  ( RSpan ‘ 𝑅 ) | 
						
							| 3 |  | sseq2 | ⊢ ( 𝑗  =  𝑝  →  ( ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗  ↔  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑝 ) ) | 
						
							| 4 |  | simpl3 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  𝑇  ≠  ∅ ) | 
						
							| 5 | 1 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  𝑇 )  →  𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 6 |  | sseq1 | ⊢ ( 𝑖  =  𝑙  →  ( 𝑖  ⊆  𝑗  ↔  𝑙  ⊆  𝑗 ) ) | 
						
							| 7 | 6 | rabbidv | ⊢ ( 𝑖  =  𝑙  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  𝑇 )  ∧  𝑖  =  𝑙 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 9 |  | simp2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  𝑇  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 10 | 9 | sselda | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  𝑇 )  →  𝑙  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 11 |  | fvex | ⊢ ( PrmIdeal ‘ 𝑅 )  ∈  V | 
						
							| 12 | 11 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  𝑇 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ∈  V ) | 
						
							| 14 | 5 8 10 13 | fvmptd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  𝑇 )  →  ( 𝑉 ‘ 𝑙 )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 15 |  | ssrab2 | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ⊆  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 16 | 15 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  𝑇 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ⊆  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 17 | 14 16 | eqsstrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  𝑇 )  →  ( 𝑉 ‘ 𝑙 )  ⊆  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 18 | 17 | sseld | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  𝑇 )  →  ( 𝑝  ∈  ( 𝑉 ‘ 𝑙 )  →  𝑝  ∈  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 19 | 18 | ralimdva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  ( ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( 𝑉 ‘ 𝑙 )  →  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 20 |  | eliin | ⊢ ( 𝑝  ∈  V  →  ( 𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 )  ↔  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) ) | 
						
							| 21 | 20 | elv | ⊢ ( 𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 )  ↔  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 22 | 21 | biimpi | ⊢ ( 𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 )  →  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 23 | 19 22 | impel | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 24 |  | rspn0 | ⊢ ( 𝑇  ≠  ∅  →  ( ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( PrmIdeal ‘ 𝑅 )  →  𝑝  ∈  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 𝑇  ≠  ∅  ∧  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑝  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 26 | 4 23 25 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  𝑝  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 27 |  | simp1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  𝑅  ∈  Ring ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  𝑅  ∈  Ring ) | 
						
							| 29 |  | prmidlidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑝  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑝  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 30 | 28 26 29 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  𝑝  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 31 |  | nfv | ⊢ Ⅎ 𝑙 ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ ) | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑙 𝑝 | 
						
							| 33 |  | nfii1 | ⊢ Ⅎ 𝑙 ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) | 
						
							| 34 | 32 33 | nfel | ⊢ Ⅎ 𝑙 𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) | 
						
							| 35 | 31 34 | nfan | ⊢ Ⅎ 𝑙 ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 36 | 22 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  ( 𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 )  →  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  ∧  𝑙  ∈  𝑇 )  →  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  ∧  𝑙  ∈  𝑇 )  →  𝑙  ∈  𝑇 ) | 
						
							| 40 |  | rspa | ⊢ ( ( ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( 𝑉 ‘ 𝑙 )  ∧  𝑙  ∈  𝑇 )  →  𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 41 | 38 39 40 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  ∧  𝑙  ∈  𝑇 )  →  𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 42 | 14 | adantlr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  ∧  𝑙  ∈  𝑇 )  →  ( 𝑉 ‘ 𝑙 )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 43 | 41 42 | eleqtrd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  ∧  𝑙  ∈  𝑇 )  →  𝑝  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 44 |  | sseq2 | ⊢ ( 𝑗  =  𝑝  →  ( 𝑙  ⊆  𝑗  ↔  𝑙  ⊆  𝑝 ) ) | 
						
							| 45 | 44 | elrab | ⊢ ( 𝑝  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ↔  ( 𝑝  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑙  ⊆  𝑝 ) ) | 
						
							| 46 | 43 45 | sylib | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  ∧  𝑙  ∈  𝑇 )  →  ( 𝑝  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑙  ⊆  𝑝 ) ) | 
						
							| 47 | 46 | simprd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  ∧  𝑙  ∈  𝑇 )  →  𝑙  ⊆  𝑝 ) | 
						
							| 48 | 47 | ex | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  ( 𝑙  ∈  𝑇  →  𝑙  ⊆  𝑝 ) ) | 
						
							| 49 | 35 48 | ralrimi | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  ∀ 𝑙  ∈  𝑇 𝑙  ⊆  𝑝 ) | 
						
							| 50 |  | unissb | ⊢ ( ∪  𝑇  ⊆  𝑝  ↔  ∀ 𝑙  ∈  𝑇 𝑙  ⊆  𝑝 ) | 
						
							| 51 | 49 50 | sylibr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  ∪  𝑇  ⊆  𝑝 ) | 
						
							| 52 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 53 | 2 52 | rspssp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑝  ∈  ( LIdeal ‘ 𝑅 )  ∧  ∪  𝑇  ⊆  𝑝 )  →  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑝 ) | 
						
							| 54 | 28 30 51 53 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑝 ) | 
						
							| 55 | 3 26 54 | elrabd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  𝑝  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 } ) | 
						
							| 56 | 1 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 57 |  | sseq1 | ⊢ ( 𝑖  =  ( 𝐾 ‘ ∪  𝑇 )  →  ( 𝑖  ⊆  𝑗  ↔  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 ) ) | 
						
							| 58 | 57 | rabbidv | ⊢ ( 𝑖  =  ( 𝐾 ‘ ∪  𝑇 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 } ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑖  =  ( 𝐾 ‘ ∪  𝑇 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 } ) | 
						
							| 60 | 9 | sselda | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑖  ∈  𝑇 )  →  𝑖  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 61 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 62 | 61 52 | lidlss | ⊢ ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  →  𝑖  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 63 | 60 62 | syl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑖  ∈  𝑇 )  →  𝑖  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 64 | 63 | ralrimiva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  ∀ 𝑖  ∈  𝑇 𝑖  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 65 |  | unissb | ⊢ ( ∪  𝑇  ⊆  ( Base ‘ 𝑅 )  ↔  ∀ 𝑖  ∈  𝑇 𝑖  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 66 | 64 65 | sylibr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  ∪  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 67 | 2 61 52 | rspcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ∪  𝑇  ⊆  ( Base ‘ 𝑅 ) )  →  ( 𝐾 ‘ ∪  𝑇 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 68 | 27 66 67 | syl2anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  ( 𝐾 ‘ ∪  𝑇 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 69 | 11 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 }  ∈  V | 
						
							| 70 | 69 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 }  ∈  V ) | 
						
							| 71 | 56 59 68 70 | fvmptd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 } ) | 
						
							| 72 | 71 | eleq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  ( 𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) )  ↔  𝑝  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 } ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  ( 𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) )  ↔  𝑝  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 } ) ) | 
						
							| 74 | 55 73 | mpbird | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) )  →  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) ) | 
						
							| 75 | 72 | biimpa | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  →  𝑝  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 } ) | 
						
							| 76 | 3 | elrab | ⊢ ( 𝑝  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑗 }  ↔  ( 𝑝  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑝 ) ) | 
						
							| 77 | 75 76 | sylib | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  →  ( 𝑝  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑝 ) ) | 
						
							| 78 | 77 | simpld | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  →  𝑝  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  𝑝  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 80 |  | elssuni | ⊢ ( 𝑙  ∈  𝑇  →  𝑙  ⊆  ∪  𝑇 ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  𝑙  ⊆  ∪  𝑇 ) | 
						
							| 82 |  | simpll | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ ) ) | 
						
							| 83 | 2 61 | rspssid | ⊢ ( ( 𝑅  ∈  Ring  ∧  ∪  𝑇  ⊆  ( Base ‘ 𝑅 ) )  →  ∪  𝑇  ⊆  ( 𝐾 ‘ ∪  𝑇 ) ) | 
						
							| 84 | 27 66 83 | syl2anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  ∪  𝑇  ⊆  ( 𝐾 ‘ ∪  𝑇 ) ) | 
						
							| 85 | 82 84 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  ∪  𝑇  ⊆  ( 𝐾 ‘ ∪  𝑇 ) ) | 
						
							| 86 | 81 85 | sstrd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  𝑙  ⊆  ( 𝐾 ‘ ∪  𝑇 ) ) | 
						
							| 87 | 77 | simprd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  →  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑝 ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  ( 𝐾 ‘ ∪  𝑇 )  ⊆  𝑝 ) | 
						
							| 89 | 86 88 | sstrd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  𝑙  ⊆  𝑝 ) | 
						
							| 90 | 44 79 89 | elrabd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  𝑝  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 91 | 9 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  →  𝑇  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 92 | 91 | sselda | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  𝑙  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 93 | 1 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 94 | 7 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑖  =  𝑙 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 95 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑙  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 96 | 12 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ∈  V ) | 
						
							| 97 | 93 94 95 96 | fvmptd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝑉 ‘ 𝑙 )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 98 | 82 92 97 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  ( 𝑉 ‘ 𝑙 )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 99 | 90 98 | eleqtrrd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  ∧  𝑙  ∈  𝑇 )  →  𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 100 | 99 | ralrimiva | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  →  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 101 | 21 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  →  ( 𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 )  ↔  ∀ 𝑙  ∈  𝑇 𝑝  ∈  ( 𝑉 ‘ 𝑙 ) ) ) | 
						
							| 102 | 100 101 | mpbird | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  ∧  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) )  →  𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 103 | 74 102 | impbida | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  ( 𝑝  ∈  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 )  ↔  𝑝  ∈  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) ) ) | 
						
							| 104 | 103 | eqrdv | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑇  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑇  ≠  ∅ )  →  ∩  𝑙  ∈  𝑇 ( 𝑉 ‘ 𝑙 )  =  ( 𝑉 ‘ ( 𝐾 ‘ ∪  𝑇 ) ) ) |