Step |
Hyp |
Ref |
Expression |
1 |
|
zarclsx.1 |
⊢ 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
2 |
|
zarclsiin.1 |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
3 |
|
sseq2 |
⊢ ( 𝑗 = 𝑝 → ( ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 ↔ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑝 ) ) |
4 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → 𝑇 ≠ ∅ ) |
5 |
1
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ 𝑇 ) → 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ) |
6 |
|
sseq1 |
⊢ ( 𝑖 = 𝑙 → ( 𝑖 ⊆ 𝑗 ↔ 𝑙 ⊆ 𝑗 ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝑖 = 𝑙 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ) |
8 |
7
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ 𝑇 ) ∧ 𝑖 = 𝑙 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ) |
9 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ) |
10 |
9
|
sselda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ 𝑇 ) → 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) |
11 |
|
fvex |
⊢ ( PrmIdeal ‘ 𝑅 ) ∈ V |
12 |
11
|
rabex |
⊢ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ∈ V |
13 |
12
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ 𝑇 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ∈ V ) |
14 |
5 8 10 13
|
fvmptd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ 𝑇 ) → ( 𝑉 ‘ 𝑙 ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ) |
15 |
|
ssrab2 |
⊢ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ⊆ ( PrmIdeal ‘ 𝑅 ) |
16 |
15
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ 𝑇 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ⊆ ( PrmIdeal ‘ 𝑅 ) ) |
17 |
14 16
|
eqsstrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ 𝑇 ) → ( 𝑉 ‘ 𝑙 ) ⊆ ( PrmIdeal ‘ 𝑅 ) ) |
18 |
17
|
sseld |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ 𝑇 ) → ( 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) → 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ) ) |
19 |
18
|
ralimdva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → ( ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) → ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ) ) |
20 |
|
eliin |
⊢ ( 𝑝 ∈ V → ( 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ↔ ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) ) |
21 |
20
|
elv |
⊢ ( 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ↔ ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) |
22 |
21
|
biimpi |
⊢ ( 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) → ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) |
23 |
19 22
|
impel |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
24 |
|
rspn0 |
⊢ ( 𝑇 ≠ ∅ → ( ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) → 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ) ) |
25 |
24
|
imp |
⊢ ( ( 𝑇 ≠ ∅ ∧ ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
26 |
4 23 25
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
27 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → 𝑅 ∈ Ring ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → 𝑅 ∈ Ring ) |
29 |
|
prmidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ) |
30 |
28 26 29
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ) |
31 |
|
nfv |
⊢ Ⅎ 𝑙 ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) |
32 |
|
nfcv |
⊢ Ⅎ 𝑙 𝑝 |
33 |
|
nfii1 |
⊢ Ⅎ 𝑙 ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) |
34 |
32 33
|
nfel |
⊢ Ⅎ 𝑙 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) |
35 |
31 34
|
nfan |
⊢ Ⅎ 𝑙 ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) |
36 |
22
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → ( 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) → ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) ) |
37 |
36
|
imp |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) |
38 |
37
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑇 ) → ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) |
39 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑙 ∈ 𝑇 ) |
40 |
|
rspa |
⊢ ( ( ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ∧ 𝑙 ∈ 𝑇 ) → 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) |
41 |
38 39 40
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) |
42 |
14
|
adantlr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑇 ) → ( 𝑉 ‘ 𝑙 ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ) |
43 |
41 42
|
eleqtrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑝 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ) |
44 |
|
sseq2 |
⊢ ( 𝑗 = 𝑝 → ( 𝑙 ⊆ 𝑗 ↔ 𝑙 ⊆ 𝑝 ) ) |
45 |
44
|
elrab |
⊢ ( 𝑝 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ↔ ( 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑙 ⊆ 𝑝 ) ) |
46 |
43 45
|
sylib |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑇 ) → ( 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑙 ⊆ 𝑝 ) ) |
47 |
46
|
simprd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑙 ⊆ 𝑝 ) |
48 |
47
|
ex |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → ( 𝑙 ∈ 𝑇 → 𝑙 ⊆ 𝑝 ) ) |
49 |
35 48
|
ralrimi |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → ∀ 𝑙 ∈ 𝑇 𝑙 ⊆ 𝑝 ) |
50 |
|
unissb |
⊢ ( ∪ 𝑇 ⊆ 𝑝 ↔ ∀ 𝑙 ∈ 𝑇 𝑙 ⊆ 𝑝 ) |
51 |
49 50
|
sylibr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → ∪ 𝑇 ⊆ 𝑝 ) |
52 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
53 |
2 52
|
rspssp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∧ ∪ 𝑇 ⊆ 𝑝 ) → ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑝 ) |
54 |
28 30 51 53
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑝 ) |
55 |
3 26 54
|
elrabd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → 𝑝 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 } ) |
56 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ) |
57 |
|
sseq1 |
⊢ ( 𝑖 = ( 𝐾 ‘ ∪ 𝑇 ) → ( 𝑖 ⊆ 𝑗 ↔ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 ) ) |
58 |
57
|
rabbidv |
⊢ ( 𝑖 = ( 𝐾 ‘ ∪ 𝑇 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 } ) |
59 |
58
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑖 = ( 𝐾 ‘ ∪ 𝑇 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 } ) |
60 |
9
|
sselda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑖 ∈ 𝑇 ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) |
61 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
62 |
61 52
|
lidlss |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) → 𝑖 ⊆ ( Base ‘ 𝑅 ) ) |
63 |
60 62
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑖 ∈ 𝑇 ) → 𝑖 ⊆ ( Base ‘ 𝑅 ) ) |
64 |
63
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → ∀ 𝑖 ∈ 𝑇 𝑖 ⊆ ( Base ‘ 𝑅 ) ) |
65 |
|
unissb |
⊢ ( ∪ 𝑇 ⊆ ( Base ‘ 𝑅 ) ↔ ∀ 𝑖 ∈ 𝑇 𝑖 ⊆ ( Base ‘ 𝑅 ) ) |
66 |
64 65
|
sylibr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → ∪ 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
67 |
2 61 52
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ∪ 𝑇 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝐾 ‘ ∪ 𝑇 ) ∈ ( LIdeal ‘ 𝑅 ) ) |
68 |
27 66 67
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → ( 𝐾 ‘ ∪ 𝑇 ) ∈ ( LIdeal ‘ 𝑅 ) ) |
69 |
11
|
rabex |
⊢ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 } ∈ V |
70 |
69
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 } ∈ V ) |
71 |
56 59 68 70
|
fvmptd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 } ) |
72 |
71
|
eleq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → ( 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ↔ 𝑝 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 } ) ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → ( 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ↔ 𝑝 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 } ) ) |
74 |
55 73
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) → 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) |
75 |
72
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) → 𝑝 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 } ) |
76 |
3
|
elrab |
⊢ ( 𝑝 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑗 } ↔ ( 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑝 ) ) |
77 |
75 76
|
sylib |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) → ( 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑝 ) ) |
78 |
77
|
simpld |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) → 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
79 |
78
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑝 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
80 |
|
elssuni |
⊢ ( 𝑙 ∈ 𝑇 → 𝑙 ⊆ ∪ 𝑇 ) |
81 |
80
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑙 ⊆ ∪ 𝑇 ) |
82 |
|
simpll |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ) |
83 |
2 61
|
rspssid |
⊢ ( ( 𝑅 ∈ Ring ∧ ∪ 𝑇 ⊆ ( Base ‘ 𝑅 ) ) → ∪ 𝑇 ⊆ ( 𝐾 ‘ ∪ 𝑇 ) ) |
84 |
27 66 83
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → ∪ 𝑇 ⊆ ( 𝐾 ‘ ∪ 𝑇 ) ) |
85 |
82 84
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → ∪ 𝑇 ⊆ ( 𝐾 ‘ ∪ 𝑇 ) ) |
86 |
81 85
|
sstrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑙 ⊆ ( 𝐾 ‘ ∪ 𝑇 ) ) |
87 |
77
|
simprd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) → ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑝 ) |
88 |
87
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → ( 𝐾 ‘ ∪ 𝑇 ) ⊆ 𝑝 ) |
89 |
86 88
|
sstrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑙 ⊆ 𝑝 ) |
90 |
44 79 89
|
elrabd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑝 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ) |
91 |
9
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) → 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ) |
92 |
91
|
sselda |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) |
93 |
1
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ) |
94 |
7
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝑙 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ) |
95 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) |
96 |
12
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ∈ V ) |
97 |
93 94 95 96
|
fvmptd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑉 ‘ 𝑙 ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ) |
98 |
82 92 97
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → ( 𝑉 ‘ 𝑙 ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙 ⊆ 𝑗 } ) |
99 |
90 98
|
eleqtrrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ∧ 𝑙 ∈ 𝑇 ) → 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) |
100 |
99
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) → ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) |
101 |
21
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) → ( 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ↔ ∀ 𝑙 ∈ 𝑇 𝑝 ∈ ( 𝑉 ‘ 𝑙 ) ) ) |
102 |
100 101
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) → 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ) |
103 |
74 102
|
impbida |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → ( 𝑝 ∈ ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) ↔ 𝑝 ∈ ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) ) |
104 |
103
|
eqrdv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑇 ≠ ∅ ) → ∩ 𝑙 ∈ 𝑇 ( 𝑉 ‘ 𝑙 ) = ( 𝑉 ‘ ( 𝐾 ‘ ∪ 𝑇 ) ) ) |