Metamath Proof Explorer


Theorem zarclsint

Description: The intersection of a family of closed sets is closed in the Zariski topology. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypothesis zarclsx.1 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
Assertion zarclsint ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅ ) → 𝑆 ∈ ran 𝑉 )

Proof

Step Hyp Ref Expression
1 zarclsx.1 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
2 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
3 2 ad4antr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑅 ∈ Ring )
4 elpwi ( 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) → 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) )
5 4 adantl ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) → 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) )
6 5 adantr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) )
7 6 sselda ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑖𝑟 ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) )
8 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
9 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
10 8 9 lidlss ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) → 𝑖 ⊆ ( Base ‘ 𝑅 ) )
11 7 10 syl ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑖𝑟 ) → 𝑖 ⊆ ( Base ‘ 𝑅 ) )
12 11 ralrimiva ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → ∀ 𝑖𝑟 𝑖 ⊆ ( Base ‘ 𝑅 ) )
13 unissb ( 𝑟 ⊆ ( Base ‘ 𝑅 ) ↔ ∀ 𝑖𝑟 𝑖 ⊆ ( Base ‘ 𝑅 ) )
14 12 13 sylibr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑟 ⊆ ( Base ‘ 𝑅 ) )
15 eqid ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 )
16 15 8 9 rspcl ( ( 𝑅 ∈ Ring ∧ 𝑟 ⊆ ( Base ‘ 𝑅 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ∈ ( LIdeal ‘ 𝑅 ) )
17 3 14 16 syl2anc ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ∈ ( LIdeal ‘ 𝑅 ) )
18 sseq1 ( 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) → ( 𝑖𝑗 ↔ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ⊆ 𝑗 ) )
19 18 rabbidv ( 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ⊆ 𝑗 } )
20 19 eqeq2d ( 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) → ( 𝑆 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ↔ 𝑆 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ⊆ 𝑗 } ) )
21 20 adantl ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ) → ( 𝑆 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ↔ 𝑆 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ⊆ 𝑗 } ) )
22 simpr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑆 = ( 𝑉𝑟 ) )
23 22 inteqd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑆 = ( 𝑉𝑟 ) )
24 1 funmpt2 Fun 𝑉
25 24 a1i ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → Fun 𝑉 )
26 fvex ( PrmIdeal ‘ 𝑅 ) ∈ V
27 26 rabex { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ∈ V
28 27 1 dmmpti dom 𝑉 = ( LIdeal ‘ 𝑅 )
29 6 28 sseqtrrdi ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑟 ⊆ dom 𝑉 )
30 intimafv ( ( Fun 𝑉𝑟 ⊆ dom 𝑉 ) → ( 𝑉𝑟 ) = 𝑙𝑟 ( 𝑉𝑙 ) )
31 25 29 30 syl2anc ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → ( 𝑉𝑟 ) = 𝑙𝑟 ( 𝑉𝑙 ) )
32 23 31 eqtrd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑆 = 𝑙𝑟 ( 𝑉𝑙 ) )
33 simplr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑟 = ∅ ) → 𝑆 = ( 𝑉𝑟 ) )
34 simpr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑟 = ∅ ) → 𝑟 = ∅ )
35 34 imaeq2d ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑟 = ∅ ) → ( 𝑉𝑟 ) = ( 𝑉 “ ∅ ) )
36 ima0 ( 𝑉 “ ∅ ) = ∅
37 35 36 eqtrdi ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑟 = ∅ ) → ( 𝑉𝑟 ) = ∅ )
38 33 37 eqtrd ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑟 = ∅ ) → 𝑆 = ∅ )
39 simp-4r ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑟 = ∅ ) → 𝑆 ≠ ∅ )
40 39 neneqd ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑟 = ∅ ) → ¬ 𝑆 = ∅ )
41 38 40 pm2.65da ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → ¬ 𝑟 = ∅ )
42 41 neqned ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑟 ≠ ∅ )
43 1 15 zarclsiin ( ( 𝑅 ∈ Ring ∧ 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑟 ≠ ∅ ) → 𝑙𝑟 ( 𝑉𝑙 ) = ( 𝑉 ‘ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ) )
44 3 6 42 43 syl3anc ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑙𝑟 ( 𝑉𝑙 ) = ( 𝑉 ‘ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ) )
45 1 a1i ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
46 19 adantl ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ⊆ 𝑗 } )
47 26 rabex { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ⊆ 𝑗 } ∈ V
48 47 a1i ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ⊆ 𝑗 } ∈ V )
49 45 46 17 48 fvmptd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → ( 𝑉 ‘ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ⊆ 𝑗 } )
50 32 44 49 3eqtrd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑆 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( ( RSpan ‘ 𝑅 ) ‘ 𝑟 ) ⊆ 𝑗 } )
51 17 21 50 rspcedvd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑆 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
52 intex ( 𝑆 ≠ ∅ ↔ 𝑆 ∈ V )
53 52 biimpi ( 𝑆 ≠ ∅ → 𝑆 ∈ V )
54 53 3ad2ant3 ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅ ) → 𝑆 ∈ V )
55 1 elrnmpt ( 𝑆 ∈ V → ( 𝑆 ∈ ran 𝑉 ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑆 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
56 54 55 syl ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅ ) → ( 𝑆 ∈ ran 𝑉 ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑆 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
57 56 ad5ant123 ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → ( 𝑆 ∈ ran 𝑉 ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑆 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
58 51 57 mpbird ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → 𝑆 ∈ ran 𝑉 )
59 fvexd ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → ( LIdeal ‘ 𝑅 ) ∈ V )
60 24 a1i ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → Fun 𝑉 )
61 simplr ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ ran 𝑉 )
62 27 1 fnmpti 𝑉 Fn ( LIdeal ‘ 𝑅 )
63 fnima ( 𝑉 Fn ( LIdeal ‘ 𝑅 ) → ( 𝑉 “ ( LIdeal ‘ 𝑅 ) ) = ran 𝑉 )
64 62 63 ax-mp ( 𝑉 “ ( LIdeal ‘ 𝑅 ) ) = ran 𝑉
65 61 64 sseqtrrdi ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ ( 𝑉 “ ( LIdeal ‘ 𝑅 ) ) )
66 ssimaexg ( ( ( LIdeal ‘ 𝑅 ) ∈ V ∧ Fun 𝑉𝑆 ⊆ ( 𝑉 “ ( LIdeal ‘ 𝑅 ) ) ) → ∃ 𝑟 ( 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 = ( 𝑉𝑟 ) ) )
67 59 60 65 66 syl3anc ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑟 ( 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 = ( 𝑉𝑟 ) ) )
68 vex 𝑟 ∈ V
69 68 a1i ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) ) → 𝑟 ∈ V )
70 simpr ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) ) → 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) )
71 69 70 elpwd ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) ) → 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) )
72 71 ex ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → ( 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) → 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ) )
73 72 anim1d ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → ( ( 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → ( 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ) )
74 73 eximdv ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → ( ∃ 𝑟 ( 𝑟 ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 = ( 𝑉𝑟 ) ) → ∃ 𝑟 ( 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ∧ 𝑆 = ( 𝑉𝑟 ) ) ) )
75 67 74 mpd ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑟 ( 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ∧ 𝑆 = ( 𝑉𝑟 ) ) )
76 df-rex ( ∃ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) 𝑆 = ( 𝑉𝑟 ) ↔ ∃ 𝑟 ( 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) ∧ 𝑆 = ( 𝑉𝑟 ) ) )
77 75 76 sylibr ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑟 ∈ 𝒫 ( LIdeal ‘ 𝑅 ) 𝑆 = ( 𝑉𝑟 ) )
78 58 77 r19.29a ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ ran 𝑉 )
79 78 3impa ( ( 𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉𝑆 ≠ ∅ ) → 𝑆 ∈ ran 𝑉 )