| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 | ⊢ 𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 2 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 3 | 2 | ad4antr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | elpwi | ⊢ ( 𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 )  →  𝑟  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  →  𝑟  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  𝑟  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 7 | 6 | sselda | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑖  ∈  𝑟 )  →  𝑖  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 10 | 8 9 | lidlss | ⊢ ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  →  𝑖  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 11 | 7 10 | syl | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑖  ∈  𝑟 )  →  𝑖  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ∀ 𝑖  ∈  𝑟 𝑖  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 13 |  | unissb | ⊢ ( ∪  𝑟  ⊆  ( Base ‘ 𝑅 )  ↔  ∀ 𝑖  ∈  𝑟 𝑖  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ∪  𝑟  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 15 |  | eqid | ⊢ ( RSpan ‘ 𝑅 )  =  ( RSpan ‘ 𝑅 ) | 
						
							| 16 | 15 8 9 | rspcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ∪  𝑟  ⊆  ( Base ‘ 𝑅 ) )  →  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 17 | 3 14 16 | syl2anc | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 18 |  | sseq1 | ⊢ ( 𝑖  =  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  →  ( 𝑖  ⊆  𝑗  ↔  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ⊆  𝑗 ) ) | 
						
							| 19 | 18 | rabbidv | ⊢ ( 𝑖  =  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ⊆  𝑗 } ) | 
						
							| 20 | 19 | eqeq2d | ⊢ ( 𝑖  =  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  →  ( ∩  𝑆  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ↔  ∩  𝑆  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ⊆  𝑗 } ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑖  =  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 ) )  →  ( ∩  𝑆  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ↔  ∩  𝑆  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ⊆  𝑗 } ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  𝑆  =  ( 𝑉  “  𝑟 ) ) | 
						
							| 23 | 22 | inteqd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ∩  𝑆  =  ∩  ( 𝑉  “  𝑟 ) ) | 
						
							| 24 | 1 | funmpt2 | ⊢ Fun  𝑉 | 
						
							| 25 | 24 | a1i | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  Fun  𝑉 ) | 
						
							| 26 |  | fvex | ⊢ ( PrmIdeal ‘ 𝑅 )  ∈  V | 
						
							| 27 | 26 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ∈  V | 
						
							| 28 | 27 1 | dmmpti | ⊢ dom  𝑉  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 29 | 6 28 | sseqtrrdi | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  𝑟  ⊆  dom  𝑉 ) | 
						
							| 30 |  | intimafv | ⊢ ( ( Fun  𝑉  ∧  𝑟  ⊆  dom  𝑉 )  →  ∩  ( 𝑉  “  𝑟 )  =  ∩  𝑙  ∈  𝑟 ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 31 | 25 29 30 | syl2anc | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ∩  ( 𝑉  “  𝑟 )  =  ∩  𝑙  ∈  𝑟 ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 32 | 23 31 | eqtrd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ∩  𝑆  =  ∩  𝑙  ∈  𝑟 ( 𝑉 ‘ 𝑙 ) ) | 
						
							| 33 |  | simplr | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑟  =  ∅ )  →  𝑆  =  ( 𝑉  “  𝑟 ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑟  =  ∅ )  →  𝑟  =  ∅ ) | 
						
							| 35 | 34 | imaeq2d | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑟  =  ∅ )  →  ( 𝑉  “  𝑟 )  =  ( 𝑉  “  ∅ ) ) | 
						
							| 36 |  | ima0 | ⊢ ( 𝑉  “  ∅ )  =  ∅ | 
						
							| 37 | 35 36 | eqtrdi | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑟  =  ∅ )  →  ( 𝑉  “  𝑟 )  =  ∅ ) | 
						
							| 38 | 33 37 | eqtrd | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑟  =  ∅ )  →  𝑆  =  ∅ ) | 
						
							| 39 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑟  =  ∅ )  →  𝑆  ≠  ∅ ) | 
						
							| 40 | 39 | neneqd | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑟  =  ∅ )  →  ¬  𝑆  =  ∅ ) | 
						
							| 41 | 38 40 | pm2.65da | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ¬  𝑟  =  ∅ ) | 
						
							| 42 | 41 | neqned | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  𝑟  ≠  ∅ ) | 
						
							| 43 | 1 15 | zarclsiin | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑟  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑟  ≠  ∅ )  →  ∩  𝑙  ∈  𝑟 ( 𝑉 ‘ 𝑙 )  =  ( 𝑉 ‘ ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 ) ) ) | 
						
							| 44 | 3 6 42 43 | syl3anc | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ∩  𝑙  ∈  𝑟 ( 𝑉 ‘ 𝑙 )  =  ( 𝑉 ‘ ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 ) ) ) | 
						
							| 45 | 1 | a1i | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 46 | 19 | adantl | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  ∧  𝑖  =  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ⊆  𝑗 } ) | 
						
							| 47 | 26 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ⊆  𝑗 }  ∈  V | 
						
							| 48 | 47 | a1i | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ⊆  𝑗 }  ∈  V ) | 
						
							| 49 | 45 46 17 48 | fvmptd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ( 𝑉 ‘ ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 ) )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ⊆  𝑗 } ) | 
						
							| 50 | 32 44 49 | 3eqtrd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ∩  𝑆  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( ( RSpan ‘ 𝑅 ) ‘ ∪  𝑟 )  ⊆  𝑗 } ) | 
						
							| 51 | 17 21 50 | rspcedvd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) ∩  𝑆  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 52 |  | intex | ⊢ ( 𝑆  ≠  ∅  ↔  ∩  𝑆  ∈  V ) | 
						
							| 53 | 52 | biimpi | ⊢ ( 𝑆  ≠  ∅  →  ∩  𝑆  ∈  V ) | 
						
							| 54 | 53 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ∈  V ) | 
						
							| 55 | 1 | elrnmpt | ⊢ ( ∩  𝑆  ∈  V  →  ( ∩  𝑆  ∈  ran  𝑉  ↔  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) ∩  𝑆  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉  ∧  𝑆  ≠  ∅ )  →  ( ∩  𝑆  ∈  ran  𝑉  ↔  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) ∩  𝑆  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 57 | 56 | ad5ant123 | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ( ∩  𝑆  ∈  ran  𝑉  ↔  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) ∩  𝑆  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 58 | 51 57 | mpbird | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ∩  𝑆  ∈  ran  𝑉 ) | 
						
							| 59 |  | fvexd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  ( LIdeal ‘ 𝑅 )  ∈  V ) | 
						
							| 60 | 24 | a1i | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  Fun  𝑉 ) | 
						
							| 61 |  | simplr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  𝑆  ⊆  ran  𝑉 ) | 
						
							| 62 | 27 1 | fnmpti | ⊢ 𝑉  Fn  ( LIdeal ‘ 𝑅 ) | 
						
							| 63 |  | fnima | ⊢ ( 𝑉  Fn  ( LIdeal ‘ 𝑅 )  →  ( 𝑉  “  ( LIdeal ‘ 𝑅 ) )  =  ran  𝑉 ) | 
						
							| 64 | 62 63 | ax-mp | ⊢ ( 𝑉  “  ( LIdeal ‘ 𝑅 ) )  =  ran  𝑉 | 
						
							| 65 | 61 64 | sseqtrrdi | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  𝑆  ⊆  ( 𝑉  “  ( LIdeal ‘ 𝑅 ) ) ) | 
						
							| 66 |  | ssimaexg | ⊢ ( ( ( LIdeal ‘ 𝑅 )  ∈  V  ∧  Fun  𝑉  ∧  𝑆  ⊆  ( 𝑉  “  ( LIdeal ‘ 𝑅 ) ) )  →  ∃ 𝑟 ( 𝑟  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) ) ) | 
						
							| 67 | 59 60 65 66 | syl3anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  ∃ 𝑟 ( 𝑟  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) ) ) | 
						
							| 68 |  | vex | ⊢ 𝑟  ∈  V | 
						
							| 69 | 68 | a1i | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ⊆  ( LIdeal ‘ 𝑅 ) )  →  𝑟  ∈  V ) | 
						
							| 70 |  | simpr | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ⊆  ( LIdeal ‘ 𝑅 ) )  →  𝑟  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 71 | 69 70 | elpwd | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ⊆  ( LIdeal ‘ 𝑅 ) )  →  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 72 | 71 | ex | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  ( 𝑟  ⊆  ( LIdeal ‘ 𝑅 )  →  𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) ) ) | 
						
							| 73 | 72 | anim1d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  ( ( 𝑟  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ( 𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) ) ) ) | 
						
							| 74 | 73 | eximdv | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  ( ∃ 𝑟 ( 𝑟  ⊆  ( LIdeal ‘ 𝑅 )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) )  →  ∃ 𝑟 ( 𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) ) ) ) | 
						
							| 75 | 67 74 | mpd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  ∃ 𝑟 ( 𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) ) ) | 
						
							| 76 |  | df-rex | ⊢ ( ∃ 𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) 𝑆  =  ( 𝑉  “  𝑟 )  ↔  ∃ 𝑟 ( 𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 )  ∧  𝑆  =  ( 𝑉  “  𝑟 ) ) ) | 
						
							| 77 | 75 76 | sylibr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  ∃ 𝑟  ∈  𝒫  ( LIdeal ‘ 𝑅 ) 𝑆  =  ( 𝑉  “  𝑟 ) ) | 
						
							| 78 | 58 77 | r19.29a | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉 )  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ∈  ran  𝑉 ) | 
						
							| 79 | 78 | 3impa | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ⊆  ran  𝑉  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ∈  ran  𝑉 ) |