Metamath Proof Explorer


Theorem zarclssn

Description: The closed points of Zariski topology are the maximal ideals. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zarclsx.1 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
zarclssn.1 𝐵 = ( LIdeal ‘ 𝑅 )
Assertion zarclssn ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( { 𝑀 } = ( 𝑉𝑀 ) ↔ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 zarclsx.1 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
2 zarclssn.1 𝐵 = ( LIdeal ‘ 𝑅 )
3 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
4 3 ad2antrr ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑅 ∈ Ring )
5 simplr ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑀𝐵 )
6 5 2 eleqtrdi ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) )
7 simpr ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → { 𝑀 } = ( 𝑉𝑀 ) )
8 snnzg ( 𝑀𝐵 → { 𝑀 } ≠ ∅ )
9 5 8 syl ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → { 𝑀 } ≠ ∅ )
10 7 9 eqnetrrd ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ( 𝑉𝑀 ) ≠ ∅ )
11 simpll ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑅 ∈ CRing )
12 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
13 1 12 zarcls1 ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 𝑉𝑀 ) = ∅ ↔ 𝑀 = ( Base ‘ 𝑅 ) ) )
14 13 necon3bid ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 𝑉𝑀 ) ≠ ∅ ↔ 𝑀 ≠ ( Base ‘ 𝑅 ) ) )
15 11 6 14 syl2anc ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ( ( 𝑉𝑀 ) ≠ ∅ ↔ 𝑀 ≠ ( Base ‘ 𝑅 ) ) )
16 10 15 mpbid ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑀 ≠ ( Base ‘ 𝑅 ) )
17 simpr ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑗𝑚 )
18 11 ad5antr ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑅 ∈ CRing )
19 simplr ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) )
20 eqid ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )
21 20 mxidlprm ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) )
22 18 19 21 syl2anc ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) )
23 simp-4r ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑀𝑗 )
24 23 17 sstrd ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑀𝑚 )
25 1 a1i ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
26 sseq1 ( 𝑖 = 𝑀 → ( 𝑖𝑗𝑀𝑗 ) )
27 26 rabbidv ( 𝑖 = 𝑀 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } )
28 27 adantl ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑖 = 𝑀 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } )
29 fvex ( PrmIdeal ‘ 𝑅 ) ∈ V
30 29 rabex { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } ∈ V
31 30 a1i ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } ∈ V )
32 25 28 6 31 fvmptd ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ( 𝑉𝑀 ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } )
33 7 32 eqtr2d ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } = { 𝑀 } )
34 rabeqsn ( { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } = { 𝑀 } ↔ ∀ 𝑗 ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) )
35 33 34 sylib ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ∀ 𝑗 ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) )
36 35 ad5antr ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → ∀ 𝑗 ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) )
37 vex 𝑚 ∈ V
38 eleq1w ( 𝑗 = 𝑚 → ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ↔ 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ) )
39 sseq2 ( 𝑗 = 𝑚 → ( 𝑀𝑗𝑀𝑚 ) )
40 38 39 anbi12d ( 𝑗 = 𝑚 → ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ ( 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑚 ) ) )
41 eqeq1 ( 𝑗 = 𝑚 → ( 𝑗 = 𝑀𝑚 = 𝑀 ) )
42 40 41 bibi12d ( 𝑗 = 𝑚 → ( ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) ↔ ( ( 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑚 ) ↔ 𝑚 = 𝑀 ) ) )
43 37 42 spcv ( ∀ 𝑗 ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) → ( ( 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑚 ) ↔ 𝑚 = 𝑀 ) )
44 36 43 syl ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → ( ( 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑚 ) ↔ 𝑚 = 𝑀 ) )
45 22 24 44 mpbi2and ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑚 = 𝑀 )
46 17 45 sseqtrd ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑗𝑀 )
47 46 23 eqssd ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑗 = 𝑀 )
48 3 ad5antr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring )
49 simpllr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) )
50 simpr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → ¬ 𝑗 = ( Base ‘ 𝑅 ) )
51 50 neqned ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → 𝑗 ≠ ( Base ‘ 𝑅 ) )
52 12 ssmxidl ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ≠ ( Base ‘ 𝑅 ) ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑗𝑚 )
53 48 49 51 52 syl3anc ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑗𝑚 )
54 47 53 r19.29a ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → 𝑗 = 𝑀 )
55 54 ex ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) → ( ¬ 𝑗 = ( Base ‘ 𝑅 ) → 𝑗 = 𝑀 ) )
56 55 orrd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) → ( 𝑗 = ( Base ‘ 𝑅 ) ∨ 𝑗 = 𝑀 ) )
57 56 orcomd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) )
58 57 ex ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) ) )
59 58 ralrimiva ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) ) )
60 6 16 59 3jca ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) ) ) )
61 12 ismxidl ( 𝑅 ∈ Ring → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) )
62 61 biimpar ( ( 𝑅 ∈ Ring ∧ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) )
63 4 60 62 syl2anc ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) )
64 1 a1i ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
65 27 adantl ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝑀 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } )
66 12 mxidlidl ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) )
67 3 66 sylan ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) )
68 30 a1i ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } ∈ V )
69 64 65 67 68 fvmptd ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ( 𝑉𝑀 ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } )
70 3 ad2antrr ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑅 ∈ Ring )
71 simplr ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) )
72 simprl ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) )
73 prmidlidl ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) )
74 70 72 73 syl2anc ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) )
75 simprr ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑀𝑗 )
76 74 75 jca ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) )
77 12 mxidlmax ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) )
78 70 71 76 77 syl21anc ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) )
79 eqid ( .r𝑅 ) = ( .r𝑅 )
80 12 79 prmidlnr ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑗 ≠ ( Base ‘ 𝑅 ) )
81 70 72 80 syl2anc ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑗 ≠ ( Base ‘ 𝑅 ) )
82 81 neneqd ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → ¬ 𝑗 = ( Base ‘ 𝑅 ) )
83 78 82 olcnd ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑗 = 𝑀 )
84 simpr ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → 𝑗 = 𝑀 )
85 20 mxidlprm ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( PrmIdeal ‘ 𝑅 ) )
86 85 adantr ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → 𝑀 ∈ ( PrmIdeal ‘ 𝑅 ) )
87 84 86 eqeltrd ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) )
88 ssidd ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → 𝑗𝑗 )
89 84 88 eqsstrrd ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → 𝑀𝑗 )
90 87 89 jca ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) )
91 83 90 impbida ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) )
92 91 alrimiv ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ∀ 𝑗 ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) )
93 92 34 sylibr ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } = { 𝑀 } )
94 69 93 eqtr2d ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → { 𝑀 } = ( 𝑉𝑀 ) )
95 94 adantlr ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → { 𝑀 } = ( 𝑉𝑀 ) )
96 63 95 impbida ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( { 𝑀 } = ( 𝑉𝑀 ) ↔ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) )