| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 | ⊢ 𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 2 |  | zarclssn.1 | ⊢ 𝐵  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 3 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | simplr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 6 | 5 2 | eleqtrdi | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  𝑀  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) ) | 
						
							| 8 | 5 | snn0d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  { 𝑀 }  ≠  ∅ ) | 
						
							| 9 | 7 8 | eqnetrrd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  ( 𝑉 ‘ 𝑀 )  ≠  ∅ ) | 
						
							| 10 |  | simpll | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  𝑅  ∈  CRing ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 12 | 1 11 | zarcls1 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( ( 𝑉 ‘ 𝑀 )  =  ∅  ↔  𝑀  =  ( Base ‘ 𝑅 ) ) ) | 
						
							| 13 | 12 | necon3bid | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( ( 𝑉 ‘ 𝑀 )  ≠  ∅  ↔  𝑀  ≠  ( Base ‘ 𝑅 ) ) ) | 
						
							| 14 | 10 6 13 | syl2anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  ( ( 𝑉 ‘ 𝑀 )  ≠  ∅  ↔  𝑀  ≠  ( Base ‘ 𝑅 ) ) ) | 
						
							| 15 | 9 14 | mpbid | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  𝑀  ≠  ( Base ‘ 𝑅 ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  𝑗  ⊆  𝑚 ) | 
						
							| 17 | 10 | ad5antr | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  𝑅  ∈  CRing ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) ) | 
						
							| 19 |  | eqid | ⊢ ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )  =  ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 20 | 19 | mxidlprm | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  𝑚  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 21 | 17 18 20 | syl2anc | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  𝑚  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 22 |  | simp-4r | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  𝑀  ⊆  𝑗 ) | 
						
							| 23 | 22 16 | sstrd | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  𝑀  ⊆  𝑚 ) | 
						
							| 24 | 1 | a1i | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 25 |  | sseq1 | ⊢ ( 𝑖  =  𝑀  →  ( 𝑖  ⊆  𝑗  ↔  𝑀  ⊆  𝑗 ) ) | 
						
							| 26 | 25 | rabbidv | ⊢ ( 𝑖  =  𝑀  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 } ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑖  =  𝑀 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 } ) | 
						
							| 28 |  | fvex | ⊢ ( PrmIdeal ‘ 𝑅 )  ∈  V | 
						
							| 29 | 28 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 }  ∈  V | 
						
							| 30 | 29 | a1i | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 }  ∈  V ) | 
						
							| 31 | 24 27 6 30 | fvmptd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  ( 𝑉 ‘ 𝑀 )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 } ) | 
						
							| 32 | 7 31 | eqtr2d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 }  =  { 𝑀 } ) | 
						
							| 33 |  | rabeqsn | ⊢ ( { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 }  =  { 𝑀 }  ↔  ∀ 𝑗 ( ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 )  ↔  𝑗  =  𝑀 ) ) | 
						
							| 34 | 32 33 | sylib | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  ∀ 𝑗 ( ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 )  ↔  𝑗  =  𝑀 ) ) | 
						
							| 35 | 34 | ad5antr | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  ∀ 𝑗 ( ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 )  ↔  𝑗  =  𝑀 ) ) | 
						
							| 36 |  | vex | ⊢ 𝑚  ∈  V | 
						
							| 37 |  | eleq1w | ⊢ ( 𝑗  =  𝑚  →  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ↔  𝑚  ∈  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 38 |  | sseq2 | ⊢ ( 𝑗  =  𝑚  →  ( 𝑀  ⊆  𝑗  ↔  𝑀  ⊆  𝑚 ) ) | 
						
							| 39 | 37 38 | anbi12d | ⊢ ( 𝑗  =  𝑚  →  ( ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 )  ↔  ( 𝑚  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑚 ) ) ) | 
						
							| 40 |  | eqeq1 | ⊢ ( 𝑗  =  𝑚  →  ( 𝑗  =  𝑀  ↔  𝑚  =  𝑀 ) ) | 
						
							| 41 | 39 40 | bibi12d | ⊢ ( 𝑗  =  𝑚  →  ( ( ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 )  ↔  𝑗  =  𝑀 )  ↔  ( ( 𝑚  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑚 )  ↔  𝑚  =  𝑀 ) ) ) | 
						
							| 42 | 36 41 | spcv | ⊢ ( ∀ 𝑗 ( ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 )  ↔  𝑗  =  𝑀 )  →  ( ( 𝑚  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑚 )  ↔  𝑚  =  𝑀 ) ) | 
						
							| 43 | 35 42 | syl | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  ( ( 𝑚  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑚 )  ↔  𝑚  =  𝑀 ) ) | 
						
							| 44 | 21 23 43 | mpbi2and | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  𝑚  =  𝑀 ) | 
						
							| 45 | 16 44 | sseqtrd | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  𝑗  ⊆  𝑀 ) | 
						
							| 46 | 45 22 | eqssd | ⊢ ( ( ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  ⊆  𝑚 )  →  𝑗  =  𝑀 ) | 
						
							| 47 | 3 | ad5antr | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 48 |  | simpllr | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  →  ¬  𝑗  =  ( Base ‘ 𝑅 ) ) | 
						
							| 50 | 49 | neqned | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  →  𝑗  ≠  ( Base ‘ 𝑅 ) ) | 
						
							| 51 | 11 | ssmxidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ≠  ( Base ‘ 𝑅 ) )  →  ∃ 𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) 𝑗  ⊆  𝑚 ) | 
						
							| 52 | 47 48 50 51 | syl3anc | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  →  ∃ 𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) 𝑗  ⊆  𝑚 ) | 
						
							| 53 | 46 52 | r19.29a | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  ( Base ‘ 𝑅 ) )  →  𝑗  =  𝑀 ) | 
						
							| 54 | 53 | ex | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  →  ( ¬  𝑗  =  ( Base ‘ 𝑅 )  →  𝑗  =  𝑀 ) ) | 
						
							| 55 | 54 | orrd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  →  ( 𝑗  =  ( Base ‘ 𝑅 )  ∨  𝑗  =  𝑀 ) ) | 
						
							| 56 | 55 | orcomd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) | 
						
							| 57 | 56 | ex | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 58 | 57 | ralrimiva | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  ∀ 𝑗  ∈  ( LIdeal ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 59 | 6 15 58 | 3jca | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  ( 𝑀  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑀  ≠  ( Base ‘ 𝑅 )  ∧  ∀ 𝑗  ∈  ( LIdeal ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) ) | 
						
							| 60 | 11 | ismxidl | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑀  ∈  ( MaxIdeal ‘ 𝑅 )  ↔  ( 𝑀  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑀  ≠  ( Base ‘ 𝑅 )  ∧  ∀ 𝑗  ∈  ( LIdeal ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 61 | 60 | biimpar | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑀  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑀  ≠  ( Base ‘ 𝑅 )  ∧  ∀ 𝑗  ∈  ( LIdeal ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) )  →  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) ) | 
						
							| 62 | 4 59 61 | syl2anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) )  →  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) ) | 
						
							| 63 | 1 | a1i | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 64 | 26 | adantl | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑖  =  𝑀 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 } ) | 
						
							| 65 | 11 | mxidlidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  𝑀  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 66 | 3 65 | sylan | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  𝑀  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 67 | 29 | a1i | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 }  ∈  V ) | 
						
							| 68 | 63 64 66 67 | fvmptd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  ( 𝑉 ‘ 𝑀 )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 } ) | 
						
							| 69 | 3 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  𝑅  ∈  Ring ) | 
						
							| 70 |  | simplr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) ) | 
						
							| 71 |  | simprl | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 72 |  | prmidlidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 73 | 69 71 72 | syl2anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 74 |  | simprr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  𝑀  ⊆  𝑗 ) | 
						
							| 75 | 73 74 | jca | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  ( 𝑗  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) ) | 
						
							| 76 | 11 | mxidlmax | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) | 
						
							| 77 | 69 70 75 76 | syl21anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) | 
						
							| 78 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 79 | 11 78 | prmidlnr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑗  ≠  ( Base ‘ 𝑅 ) ) | 
						
							| 80 | 69 71 79 | syl2anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  𝑗  ≠  ( Base ‘ 𝑅 ) ) | 
						
							| 81 | 80 | neneqd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  ¬  𝑗  =  ( Base ‘ 𝑅 ) ) | 
						
							| 82 | 77 81 | olcnd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) )  →  𝑗  =  𝑀 ) | 
						
							| 83 |  | simpr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  =  𝑀 )  →  𝑗  =  𝑀 ) | 
						
							| 84 | 19 | mxidlprm | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  𝑀  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  =  𝑀 )  →  𝑀  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 86 | 83 85 | eqeltrd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  =  𝑀 )  →  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 87 |  | ssidd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  =  𝑀 )  →  𝑗  ⊆  𝑗 ) | 
						
							| 88 | 83 87 | eqsstrrd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  =  𝑀 )  →  𝑀  ⊆  𝑗 ) | 
						
							| 89 | 86 88 | jca | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝑗  =  𝑀 )  →  ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 ) ) | 
						
							| 90 | 82 89 | impbida | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  ( ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 )  ↔  𝑗  =  𝑀 ) ) | 
						
							| 91 | 90 | alrimiv | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  ∀ 𝑗 ( ( 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑀  ⊆  𝑗 )  ↔  𝑗  =  𝑀 ) ) | 
						
							| 92 | 91 33 | sylibr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑀  ⊆  𝑗 }  =  { 𝑀 } ) | 
						
							| 93 | 68 92 | eqtr2d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) ) | 
						
							| 94 | 93 | adantlr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  { 𝑀 }  =  ( 𝑉 ‘ 𝑀 ) ) | 
						
							| 95 | 62 94 | impbida | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( { 𝑀 }  =  ( 𝑉 ‘ 𝑀 )  ↔  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) ) ) |