Metamath Proof Explorer


Theorem zarclssn

Description: The closed points of Zariski topology are the maximal ideals. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zarclsx.1 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
zarclssn.1 𝐵 = ( LIdeal ‘ 𝑅 )
Assertion zarclssn ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( { 𝑀 } = ( 𝑉𝑀 ) ↔ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 zarclsx.1 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
2 zarclssn.1 𝐵 = ( LIdeal ‘ 𝑅 )
3 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
4 3 ad2antrr ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑅 ∈ Ring )
5 simplr ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑀𝐵 )
6 5 2 eleqtrdi ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) )
7 simpr ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → { 𝑀 } = ( 𝑉𝑀 ) )
8 5 snn0d ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → { 𝑀 } ≠ ∅ )
9 7 8 eqnetrrd ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ( 𝑉𝑀 ) ≠ ∅ )
10 simpll ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑅 ∈ CRing )
11 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
12 1 11 zarcls1 ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 𝑉𝑀 ) = ∅ ↔ 𝑀 = ( Base ‘ 𝑅 ) ) )
13 12 necon3bid ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 𝑉𝑀 ) ≠ ∅ ↔ 𝑀 ≠ ( Base ‘ 𝑅 ) ) )
14 10 6 13 syl2anc ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ( ( 𝑉𝑀 ) ≠ ∅ ↔ 𝑀 ≠ ( Base ‘ 𝑅 ) ) )
15 9 14 mpbid ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑀 ≠ ( Base ‘ 𝑅 ) )
16 simpr ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑗𝑚 )
17 10 ad5antr ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑅 ∈ CRing )
18 simplr ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) )
19 eqid ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )
20 19 mxidlprm ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) )
21 17 18 20 syl2anc ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) )
22 simp-4r ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑀𝑗 )
23 22 16 sstrd ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑀𝑚 )
24 1 a1i ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
25 sseq1 ( 𝑖 = 𝑀 → ( 𝑖𝑗𝑀𝑗 ) )
26 25 rabbidv ( 𝑖 = 𝑀 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } )
27 26 adantl ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑖 = 𝑀 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } )
28 fvex ( PrmIdeal ‘ 𝑅 ) ∈ V
29 28 rabex { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } ∈ V
30 29 a1i ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } ∈ V )
31 24 27 6 30 fvmptd ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ( 𝑉𝑀 ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } )
32 7 31 eqtr2d ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } = { 𝑀 } )
33 rabeqsn ( { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } = { 𝑀 } ↔ ∀ 𝑗 ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) )
34 32 33 sylib ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ∀ 𝑗 ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) )
35 34 ad5antr ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → ∀ 𝑗 ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) )
36 vex 𝑚 ∈ V
37 eleq1w ( 𝑗 = 𝑚 → ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ↔ 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ) )
38 sseq2 ( 𝑗 = 𝑚 → ( 𝑀𝑗𝑀𝑚 ) )
39 37 38 anbi12d ( 𝑗 = 𝑚 → ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ ( 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑚 ) ) )
40 eqeq1 ( 𝑗 = 𝑚 → ( 𝑗 = 𝑀𝑚 = 𝑀 ) )
41 39 40 bibi12d ( 𝑗 = 𝑚 → ( ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) ↔ ( ( 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑚 ) ↔ 𝑚 = 𝑀 ) ) )
42 36 41 spcv ( ∀ 𝑗 ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) → ( ( 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑚 ) ↔ 𝑚 = 𝑀 ) )
43 35 42 syl ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → ( ( 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑚 ) ↔ 𝑚 = 𝑀 ) )
44 21 23 43 mpbi2and ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑚 = 𝑀 )
45 16 44 sseqtrd ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑗𝑀 )
46 45 22 eqssd ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗𝑚 ) → 𝑗 = 𝑀 )
47 3 ad5antr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring )
48 simpllr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) )
49 simpr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → ¬ 𝑗 = ( Base ‘ 𝑅 ) )
50 49 neqned ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → 𝑗 ≠ ( Base ‘ 𝑅 ) )
51 11 ssmxidl ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ≠ ( Base ‘ 𝑅 ) ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑗𝑚 )
52 47 48 50 51 syl3anc ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑗𝑚 )
53 46 52 r19.29a ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) ∧ ¬ 𝑗 = ( Base ‘ 𝑅 ) ) → 𝑗 = 𝑀 )
54 53 ex ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) → ( ¬ 𝑗 = ( Base ‘ 𝑅 ) → 𝑗 = 𝑀 ) )
55 54 orrd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) → ( 𝑗 = ( Base ‘ 𝑅 ) ∨ 𝑗 = 𝑀 ) )
56 55 orcomd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀𝑗 ) → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) )
57 56 ex ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) ) )
58 57 ralrimiva ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) ) )
59 6 15 58 3jca ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) ) ) )
60 11 ismxidl ( 𝑅 ∈ Ring → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) )
61 60 biimpar ( ( 𝑅 ∈ Ring ∧ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) )
62 4 59 61 syl2anc ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ { 𝑀 } = ( 𝑉𝑀 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) )
63 1 a1i ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
64 26 adantl ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝑀 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } )
65 11 mxidlidl ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) )
66 3 65 sylan ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) )
67 29 a1i ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } ∈ V )
68 63 64 66 67 fvmptd ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ( 𝑉𝑀 ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } )
69 3 ad2antrr ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑅 ∈ Ring )
70 simplr ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) )
71 simprl ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) )
72 prmidlidl ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) )
73 69 71 72 syl2anc ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) )
74 simprr ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑀𝑗 )
75 73 74 jca ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) )
76 11 mxidlmax ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) )
77 69 70 75 76 syl21anc ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → ( 𝑗 = 𝑀𝑗 = ( Base ‘ 𝑅 ) ) )
78 eqid ( .r𝑅 ) = ( .r𝑅 )
79 11 78 prmidlnr ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑗 ≠ ( Base ‘ 𝑅 ) )
80 69 71 79 syl2anc ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑗 ≠ ( Base ‘ 𝑅 ) )
81 80 neneqd ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → ¬ 𝑗 = ( Base ‘ 𝑅 ) )
82 77 81 olcnd ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ) → 𝑗 = 𝑀 )
83 simpr ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → 𝑗 = 𝑀 )
84 19 mxidlprm ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( PrmIdeal ‘ 𝑅 ) )
85 84 adantr ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → 𝑀 ∈ ( PrmIdeal ‘ 𝑅 ) )
86 83 85 eqeltrd ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) )
87 ssidd ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → 𝑗𝑗 )
88 83 87 eqsstrrd ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → 𝑀𝑗 )
89 86 88 jca ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑗 = 𝑀 ) → ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) )
90 82 89 impbida ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) )
91 90 alrimiv ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ∀ 𝑗 ( ( 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑀𝑗 ) ↔ 𝑗 = 𝑀 ) )
92 91 33 sylibr ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑀𝑗 } = { 𝑀 } )
93 68 92 eqtr2d ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → { 𝑀 } = ( 𝑉𝑀 ) )
94 93 adantlr ( ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → { 𝑀 } = ( 𝑉𝑀 ) )
95 62 94 impbida ( ( 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( { 𝑀 } = ( 𝑉𝑀 ) ↔ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) )