Metamath Proof Explorer


Theorem zarclssn

Description: The closed points of Zariski topology are the maximal ideals. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zarclsx.1 V = i LIdeal R j PrmIdeal R | i j
zarclssn.1 B = LIdeal R
Assertion zarclssn R CRing M B M = V M M MaxIdeal R

Proof

Step Hyp Ref Expression
1 zarclsx.1 V = i LIdeal R j PrmIdeal R | i j
2 zarclssn.1 B = LIdeal R
3 crngring R CRing R Ring
4 3 ad2antrr R CRing M B M = V M R Ring
5 simplr R CRing M B M = V M M B
6 5 2 eleqtrdi R CRing M B M = V M M LIdeal R
7 simpr R CRing M B M = V M M = V M
8 5 snn0d R CRing M B M = V M M
9 7 8 eqnetrrd R CRing M B M = V M V M
10 simpll R CRing M B M = V M R CRing
11 eqid Base R = Base R
12 1 11 zarcls1 R CRing M LIdeal R V M = M = Base R
13 12 necon3bid R CRing M LIdeal R V M M Base R
14 10 6 13 syl2anc R CRing M B M = V M V M M Base R
15 9 14 mpbid R CRing M B M = V M M Base R
16 simpr R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m j m
17 10 ad5antr R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m R CRing
18 simplr R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m m MaxIdeal R
19 eqid LSSum mulGrp R = LSSum mulGrp R
20 19 mxidlprm R CRing m MaxIdeal R m PrmIdeal R
21 17 18 20 syl2anc R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m m PrmIdeal R
22 simp-4r R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m M j
23 22 16 sstrd R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m M m
24 1 a1i R CRing M B M = V M V = i LIdeal R j PrmIdeal R | i j
25 sseq1 i = M i j M j
26 25 rabbidv i = M j PrmIdeal R | i j = j PrmIdeal R | M j
27 26 adantl R CRing M B M = V M i = M j PrmIdeal R | i j = j PrmIdeal R | M j
28 fvex PrmIdeal R V
29 28 rabex j PrmIdeal R | M j V
30 29 a1i R CRing M B M = V M j PrmIdeal R | M j V
31 24 27 6 30 fvmptd R CRing M B M = V M V M = j PrmIdeal R | M j
32 7 31 eqtr2d R CRing M B M = V M j PrmIdeal R | M j = M
33 rabeqsn j PrmIdeal R | M j = M j j PrmIdeal R M j j = M
34 32 33 sylib R CRing M B M = V M j j PrmIdeal R M j j = M
35 34 ad5antr R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m j j PrmIdeal R M j j = M
36 vex m V
37 eleq1w j = m j PrmIdeal R m PrmIdeal R
38 sseq2 j = m M j M m
39 37 38 anbi12d j = m j PrmIdeal R M j m PrmIdeal R M m
40 eqeq1 j = m j = M m = M
41 39 40 bibi12d j = m j PrmIdeal R M j j = M m PrmIdeal R M m m = M
42 36 41 spcv j j PrmIdeal R M j j = M m PrmIdeal R M m m = M
43 35 42 syl R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m m PrmIdeal R M m m = M
44 21 23 43 mpbi2and R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m m = M
45 16 44 sseqtrd R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m j M
46 45 22 eqssd R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m j = M
47 3 ad5antr R CRing M B M = V M j LIdeal R M j ¬ j = Base R R Ring
48 simpllr R CRing M B M = V M j LIdeal R M j ¬ j = Base R j LIdeal R
49 simpr R CRing M B M = V M j LIdeal R M j ¬ j = Base R ¬ j = Base R
50 49 neqned R CRing M B M = V M j LIdeal R M j ¬ j = Base R j Base R
51 11 ssmxidl R Ring j LIdeal R j Base R m MaxIdeal R j m
52 47 48 50 51 syl3anc R CRing M B M = V M j LIdeal R M j ¬ j = Base R m MaxIdeal R j m
53 46 52 r19.29a R CRing M B M = V M j LIdeal R M j ¬ j = Base R j = M
54 53 ex R CRing M B M = V M j LIdeal R M j ¬ j = Base R j = M
55 54 orrd R CRing M B M = V M j LIdeal R M j j = Base R j = M
56 55 orcomd R CRing M B M = V M j LIdeal R M j j = M j = Base R
57 56 ex R CRing M B M = V M j LIdeal R M j j = M j = Base R
58 57 ralrimiva R CRing M B M = V M j LIdeal R M j j = M j = Base R
59 6 15 58 3jca R CRing M B M = V M M LIdeal R M Base R j LIdeal R M j j = M j = Base R
60 11 ismxidl R Ring M MaxIdeal R M LIdeal R M Base R j LIdeal R M j j = M j = Base R
61 60 biimpar R Ring M LIdeal R M Base R j LIdeal R M j j = M j = Base R M MaxIdeal R
62 4 59 61 syl2anc R CRing M B M = V M M MaxIdeal R
63 1 a1i R CRing M MaxIdeal R V = i LIdeal R j PrmIdeal R | i j
64 26 adantl R CRing M MaxIdeal R i = M j PrmIdeal R | i j = j PrmIdeal R | M j
65 11 mxidlidl R Ring M MaxIdeal R M LIdeal R
66 3 65 sylan R CRing M MaxIdeal R M LIdeal R
67 29 a1i R CRing M MaxIdeal R j PrmIdeal R | M j V
68 63 64 66 67 fvmptd R CRing M MaxIdeal R V M = j PrmIdeal R | M j
69 3 ad2antrr R CRing M MaxIdeal R j PrmIdeal R M j R Ring
70 simplr R CRing M MaxIdeal R j PrmIdeal R M j M MaxIdeal R
71 simprl R CRing M MaxIdeal R j PrmIdeal R M j j PrmIdeal R
72 prmidlidl R Ring j PrmIdeal R j LIdeal R
73 69 71 72 syl2anc R CRing M MaxIdeal R j PrmIdeal R M j j LIdeal R
74 simprr R CRing M MaxIdeal R j PrmIdeal R M j M j
75 73 74 jca R CRing M MaxIdeal R j PrmIdeal R M j j LIdeal R M j
76 11 mxidlmax R Ring M MaxIdeal R j LIdeal R M j j = M j = Base R
77 69 70 75 76 syl21anc R CRing M MaxIdeal R j PrmIdeal R M j j = M j = Base R
78 eqid R = R
79 11 78 prmidlnr R Ring j PrmIdeal R j Base R
80 69 71 79 syl2anc R CRing M MaxIdeal R j PrmIdeal R M j j Base R
81 80 neneqd R CRing M MaxIdeal R j PrmIdeal R M j ¬ j = Base R
82 77 81 olcnd R CRing M MaxIdeal R j PrmIdeal R M j j = M
83 simpr R CRing M MaxIdeal R j = M j = M
84 19 mxidlprm R CRing M MaxIdeal R M PrmIdeal R
85 84 adantr R CRing M MaxIdeal R j = M M PrmIdeal R
86 83 85 eqeltrd R CRing M MaxIdeal R j = M j PrmIdeal R
87 ssidd R CRing M MaxIdeal R j = M j j
88 83 87 eqsstrrd R CRing M MaxIdeal R j = M M j
89 86 88 jca R CRing M MaxIdeal R j = M j PrmIdeal R M j
90 82 89 impbida R CRing M MaxIdeal R j PrmIdeal R M j j = M
91 90 alrimiv R CRing M MaxIdeal R j j PrmIdeal R M j j = M
92 91 33 sylibr R CRing M MaxIdeal R j PrmIdeal R | M j = M
93 68 92 eqtr2d R CRing M MaxIdeal R M = V M
94 93 adantlr R CRing M B M MaxIdeal R M = V M
95 62 94 impbida R CRing M B M = V M M MaxIdeal R