| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zarclsx.1 |
|
| 2 |
|
zarclssn.1 |
|
| 3 |
|
crngring |
|
| 4 |
3
|
ad2antrr |
|
| 5 |
|
simplr |
|
| 6 |
5 2
|
eleqtrdi |
|
| 7 |
|
simpr |
|
| 8 |
5
|
snn0d |
|
| 9 |
7 8
|
eqnetrrd |
|
| 10 |
|
simpll |
|
| 11 |
|
eqid |
|
| 12 |
1 11
|
zarcls1 |
|
| 13 |
12
|
necon3bid |
|
| 14 |
10 6 13
|
syl2anc |
|
| 15 |
9 14
|
mpbid |
|
| 16 |
|
simpr |
|
| 17 |
10
|
ad5antr |
|
| 18 |
|
simplr |
|
| 19 |
|
eqid |
|
| 20 |
19
|
mxidlprm |
|
| 21 |
17 18 20
|
syl2anc |
|
| 22 |
|
simp-4r |
|
| 23 |
22 16
|
sstrd |
|
| 24 |
1
|
a1i |
|
| 25 |
|
sseq1 |
|
| 26 |
25
|
rabbidv |
|
| 27 |
26
|
adantl |
|
| 28 |
|
fvex |
|
| 29 |
28
|
rabex |
|
| 30 |
29
|
a1i |
|
| 31 |
24 27 6 30
|
fvmptd |
|
| 32 |
7 31
|
eqtr2d |
|
| 33 |
|
rabeqsn |
|
| 34 |
32 33
|
sylib |
|
| 35 |
34
|
ad5antr |
|
| 36 |
|
vex |
|
| 37 |
|
eleq1w |
|
| 38 |
|
sseq2 |
|
| 39 |
37 38
|
anbi12d |
|
| 40 |
|
eqeq1 |
|
| 41 |
39 40
|
bibi12d |
|
| 42 |
36 41
|
spcv |
|
| 43 |
35 42
|
syl |
|
| 44 |
21 23 43
|
mpbi2and |
|
| 45 |
16 44
|
sseqtrd |
|
| 46 |
45 22
|
eqssd |
|
| 47 |
3
|
ad5antr |
|
| 48 |
|
simpllr |
|
| 49 |
|
simpr |
|
| 50 |
49
|
neqned |
|
| 51 |
11
|
ssmxidl |
|
| 52 |
47 48 50 51
|
syl3anc |
|
| 53 |
46 52
|
r19.29a |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
orrd |
|
| 56 |
55
|
orcomd |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
ralrimiva |
|
| 59 |
6 15 58
|
3jca |
|
| 60 |
11
|
ismxidl |
|
| 61 |
60
|
biimpar |
|
| 62 |
4 59 61
|
syl2anc |
|
| 63 |
1
|
a1i |
|
| 64 |
26
|
adantl |
|
| 65 |
11
|
mxidlidl |
|
| 66 |
3 65
|
sylan |
|
| 67 |
29
|
a1i |
|
| 68 |
63 64 66 67
|
fvmptd |
|
| 69 |
3
|
ad2antrr |
|
| 70 |
|
simplr |
|
| 71 |
|
simprl |
|
| 72 |
|
prmidlidl |
|
| 73 |
69 71 72
|
syl2anc |
|
| 74 |
|
simprr |
|
| 75 |
73 74
|
jca |
|
| 76 |
11
|
mxidlmax |
|
| 77 |
69 70 75 76
|
syl21anc |
|
| 78 |
|
eqid |
|
| 79 |
11 78
|
prmidlnr |
|
| 80 |
69 71 79
|
syl2anc |
|
| 81 |
80
|
neneqd |
|
| 82 |
77 81
|
olcnd |
|
| 83 |
|
simpr |
|
| 84 |
19
|
mxidlprm |
|
| 85 |
84
|
adantr |
|
| 86 |
83 85
|
eqeltrd |
|
| 87 |
|
ssidd |
|
| 88 |
83 87
|
eqsstrrd |
|
| 89 |
86 88
|
jca |
|
| 90 |
82 89
|
impbida |
|
| 91 |
90
|
alrimiv |
|
| 92 |
91 33
|
sylibr |
|
| 93 |
68 92
|
eqtr2d |
|
| 94 |
93
|
adantlr |
|
| 95 |
62 94
|
impbida |
|