Description: The open sets of the Zariski topology are the complements of the closed sets. (Contributed by Thierry Arnoux, 16-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zartop.1 | No typesetting found for |- S = ( Spec ` R ) with typecode |- | |
zartop.2 | |
||
zarcls.1 | No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |- | ||
zarcls.2 | |
||
Assertion | zarcls | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zartop.1 | Could not format S = ( Spec ` R ) : No typesetting found for |- S = ( Spec ` R ) with typecode |- | |
2 | zartop.2 | |
|
3 | zarcls.1 | Could not format P = ( PrmIdeal ` R ) : No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |- | |
4 | zarcls.2 | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 1 5 3 6 | rspectopn | |
8 | 2 7 | eqtr4id | |
9 | nfv | |
|
10 | nfcv | |
|
11 | nfrab1 | |
|
12 | notrab | |
|
13 | 12 | eqeq2i | |
14 | ssrab2 | |
|
15 | 14 | a1i | |
16 | elpwi | |
|
17 | ssdifsym | |
|
18 | 15 16 17 | syl2anc | |
19 | eqcom | |
|
20 | 18 19 | bitrdi | |
21 | 13 20 | bitr3id | |
22 | 21 | ad2antlr | |
23 | 22 | rexbidva | |
24 | 3 | fvexi | |
25 | 24 | rabex | |
26 | 4 25 | elrnmpti | |
27 | 23 26 | bitr4di | |
28 | 27 | pm5.32da | |
29 | ssrab2 | |
|
30 | 24 | elpw2 | |
31 | 29 30 | mpbir | |
32 | 31 | rgenw | |
33 | eqid | |
|
34 | 33 | rnmptss | |
35 | 32 34 | ax-mp | |
36 | 35 | sseli | |
37 | 36 | pm4.71ri | |
38 | vex | |
|
39 | 33 | elrnmpt | |
40 | 38 39 | ax-mp | |
41 | 40 | anbi2i | |
42 | 37 41 | bitri | |
43 | rabid | |
|
44 | 28 42 43 | 3bitr4g | |
45 | 9 10 11 44 | eqrd | |
46 | 8 45 | eqtrd | |