Metamath Proof Explorer


Theorem zarcls

Description: The open sets of the Zariski topology are the complements of the closed sets. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1 No typesetting found for |- S = ( Spec ` R ) with typecode |-
zartop.2 J=TopOpenS
zarcls.1 No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |-
zarcls.2 V=iLIdealRjP|ij
Assertion zarcls RRingJ=s𝒫P|PsranV

Proof

Step Hyp Ref Expression
1 zartop.1 Could not format S = ( Spec ` R ) : No typesetting found for |- S = ( Spec ` R ) with typecode |-
2 zartop.2 J=TopOpenS
3 zarcls.1 Could not format P = ( PrmIdeal ` R ) : No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |-
4 zarcls.2 V=iLIdealRjP|ij
5 eqid LIdealR=LIdealR
6 eqid raniLIdealRjP|¬ij=raniLIdealRjP|¬ij
7 1 5 3 6 rspectopn RRingraniLIdealRjP|¬ij=TopOpenS
8 2 7 eqtr4id RRingJ=raniLIdealRjP|¬ij
9 nfv sRRing
10 nfcv _sraniLIdealRjP|¬ij
11 nfrab1 _ss𝒫P|PsranV
12 notrab PjP|ij=jP|¬ij
13 12 eqeq2i s=PjP|ijs=jP|¬ij
14 ssrab2 jP|ijP
15 14 a1i s𝒫PjP|ijP
16 elpwi s𝒫PsP
17 ssdifsym jP|ijPsPs=PjP|ijjP|ij=Ps
18 15 16 17 syl2anc s𝒫Ps=PjP|ijjP|ij=Ps
19 eqcom jP|ij=PsPs=jP|ij
20 18 19 bitrdi s𝒫Ps=PjP|ijPs=jP|ij
21 13 20 bitr3id s𝒫Ps=jP|¬ijPs=jP|ij
22 21 ad2antlr RRings𝒫PiLIdealRs=jP|¬ijPs=jP|ij
23 22 rexbidva RRings𝒫PiLIdealRs=jP|¬ijiLIdealRPs=jP|ij
24 3 fvexi PV
25 24 rabex jP|ijV
26 4 25 elrnmpti PsranViLIdealRPs=jP|ij
27 23 26 bitr4di RRings𝒫PiLIdealRs=jP|¬ijPsranV
28 27 pm5.32da RRings𝒫PiLIdealRs=jP|¬ijs𝒫PPsranV
29 ssrab2 jP|¬ijP
30 24 elpw2 jP|¬ij𝒫PjP|¬ijP
31 29 30 mpbir jP|¬ij𝒫P
32 31 rgenw iLIdealRjP|¬ij𝒫P
33 eqid iLIdealRjP|¬ij=iLIdealRjP|¬ij
34 33 rnmptss iLIdealRjP|¬ij𝒫PraniLIdealRjP|¬ij𝒫P
35 32 34 ax-mp raniLIdealRjP|¬ij𝒫P
36 35 sseli sraniLIdealRjP|¬ijs𝒫P
37 36 pm4.71ri sraniLIdealRjP|¬ijs𝒫PsraniLIdealRjP|¬ij
38 vex sV
39 33 elrnmpt sVsraniLIdealRjP|¬ijiLIdealRs=jP|¬ij
40 38 39 ax-mp sraniLIdealRjP|¬ijiLIdealRs=jP|¬ij
41 40 anbi2i s𝒫PsraniLIdealRjP|¬ijs𝒫PiLIdealRs=jP|¬ij
42 37 41 bitri sraniLIdealRjP|¬ijs𝒫PiLIdealRs=jP|¬ij
43 rabid ss𝒫P|PsranVs𝒫PPsranV
44 28 42 43 3bitr4g RRingsraniLIdealRjP|¬ijss𝒫P|PsranV
45 9 10 11 44 eqrd RRingraniLIdealRjP|¬ij=s𝒫P|PsranV
46 8 45 eqtrd RRingJ=s𝒫P|PsranV