Metamath Proof Explorer


Theorem zartopn

Description: The Zariski topology is a topology, and its closed sets are images by V of the ideals of R . (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1 No typesetting found for |- S = ( Spec ` R ) with typecode |-
zartop.2 J=TopOpenS
zarcls.1 No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |-
zarcls.2 V=iLIdealRjP|ij
Assertion zartopn RCRingJTopOnPranV=ClsdJ

Proof

Step Hyp Ref Expression
1 zartop.1 Could not format S = ( Spec ` R ) : No typesetting found for |- S = ( Spec ` R ) with typecode |-
2 zartop.2 J=TopOpenS
3 zarcls.1 Could not format P = ( PrmIdeal ` R ) : No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |-
4 zarcls.2 V=iLIdealRjP|ij
5 ssrab2 jP|ijP
6 3 fvexi PV
7 6 elpw2 jP|ij𝒫PjP|ijP
8 5 7 mpbir jP|ij𝒫P
9 8 rgenw iLIdealRjP|ij𝒫P
10 4 rnmptss iLIdealRjP|ij𝒫PranV𝒫P
11 9 10 ax-mp ranV𝒫P
12 11 a1i RCRingranV𝒫P
13 crngring RCRingRRing
14 3 rabeqi Could not format { j e. P | i C_ j } = { j e. ( PrmIdeal ` R ) | i C_ j } : No typesetting found for |- { j e. P | i C_ j } = { j e. ( PrmIdeal ` R ) | i C_ j } with typecode |-
15 14 mpteq2i Could not format ( i e. ( LIdeal ` R ) |-> { j e. P | i C_ j } ) = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) : No typesetting found for |- ( i e. ( LIdeal ` R ) |-> { j e. P | i C_ j } ) = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
16 4 15 eqtri Could not format V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) : No typesetting found for |- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
17 eqid 0R=0R
18 16 3 17 zarcls0 RRingV0R=P
19 4 funmpt2 FunV
20 eqid LIdealR=LIdealR
21 20 17 lidl0 RRing0RLIdealR
22 6 rabex jP|ijV
23 22 4 dmmpti domV=LIdealR
24 21 23 eleqtrrdi RRing0RdomV
25 fvelrn FunV0RdomVV0RranV
26 19 24 25 sylancr RRingV0RranV
27 18 26 eqeltrrd RRingPranV
28 13 27 syl RCRingPranV
29 16 zarclsint RCRingzranVzzranV
30 12 28 29 ismred RCRingranVMooreP
31 eqid BaseR=BaseR
32 23 31 lidl1 RRingBaseRdomV
33 13 32 syl RCRingBaseRdomV
34 33 23 eleqtrdi RCRingBaseRLIdealR
35 16 31 zarcls1 RCRingBaseRLIdealRVBaseR=BaseR=BaseR
36 31 35 mpbiri RCRingBaseRLIdealRVBaseR=
37 34 36 mpdan RCRingVBaseR=
38 19 a1i RCRingFunV
39 fvelrn FunVBaseRdomVVBaseRranV
40 38 33 39 syl2anc RCRingVBaseRranV
41 37 40 eqeltrrd RCRingranV
42 16 zarclsun RCRingxranVyranVxyranV
43 eqid s𝒫P|PsranV=s𝒫P|PsranV
44 30 41 42 43 mretopd RCRings𝒫P|PsranVTopOnPranV=Clsds𝒫P|PsranV
45 1 2 3 4 zarcls RRingJ=s𝒫P|PsranV
46 13 45 syl RCRingJ=s𝒫P|PsranV
47 46 eleq1d RCRingJTopOnPs𝒫P|PsranVTopOnP
48 46 fveq2d RCRingClsdJ=Clsds𝒫P|PsranV
49 48 eqeq2d RCRingranV=ClsdJranV=Clsds𝒫P|PsranV
50 47 49 anbi12d RCRingJTopOnPranV=ClsdJs𝒫P|PsranVTopOnPranV=Clsds𝒫P|PsranV
51 44 50 mpbird RCRingJTopOnPranV=ClsdJ