Metamath Proof Explorer


Theorem zartopn

Description: The Zariski topology is a topology, and its closed sets are images by V of the ideals of R . (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1 𝑆 = ( Spec ‘ 𝑅 )
zartop.2 𝐽 = ( TopOpen ‘ 𝑆 )
zarcls.1 𝑃 = ( PrmIdeal ‘ 𝑅 )
zarcls.2 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗𝑃𝑖𝑗 } )
Assertion zartopn ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ 𝑃 ) ∧ ran 𝑉 = ( Clsd ‘ 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 zartop.1 𝑆 = ( Spec ‘ 𝑅 )
2 zartop.2 𝐽 = ( TopOpen ‘ 𝑆 )
3 zarcls.1 𝑃 = ( PrmIdeal ‘ 𝑅 )
4 zarcls.2 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗𝑃𝑖𝑗 } )
5 ssrab2 { 𝑗𝑃𝑖𝑗 } ⊆ 𝑃
6 3 fvexi 𝑃 ∈ V
7 6 elpw2 ( { 𝑗𝑃𝑖𝑗 } ∈ 𝒫 𝑃 ↔ { 𝑗𝑃𝑖𝑗 } ⊆ 𝑃 )
8 5 7 mpbir { 𝑗𝑃𝑖𝑗 } ∈ 𝒫 𝑃
9 8 rgenw 𝑖 ∈ ( LIdeal ‘ 𝑅 ) { 𝑗𝑃𝑖𝑗 } ∈ 𝒫 𝑃
10 4 rnmptss ( ∀ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) { 𝑗𝑃𝑖𝑗 } ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃 )
11 9 10 ax-mp ran 𝑉 ⊆ 𝒫 𝑃
12 11 a1i ( 𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃 )
13 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
14 3 rabeqi { 𝑗𝑃𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 }
15 14 mpteq2i ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗𝑃𝑖𝑗 } ) = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
16 4 15 eqtri 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
17 eqid ( 0g𝑅 ) = ( 0g𝑅 )
18 16 3 17 zarcls0 ( 𝑅 ∈ Ring → ( 𝑉 ‘ { ( 0g𝑅 ) } ) = 𝑃 )
19 4 funmpt2 Fun 𝑉
20 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
21 20 17 lidl0 ( 𝑅 ∈ Ring → { ( 0g𝑅 ) } ∈ ( LIdeal ‘ 𝑅 ) )
22 6 rabex { 𝑗𝑃𝑖𝑗 } ∈ V
23 22 4 dmmpti dom 𝑉 = ( LIdeal ‘ 𝑅 )
24 21 23 eleqtrrdi ( 𝑅 ∈ Ring → { ( 0g𝑅 ) } ∈ dom 𝑉 )
25 fvelrn ( ( Fun 𝑉 ∧ { ( 0g𝑅 ) } ∈ dom 𝑉 ) → ( 𝑉 ‘ { ( 0g𝑅 ) } ) ∈ ran 𝑉 )
26 19 24 25 sylancr ( 𝑅 ∈ Ring → ( 𝑉 ‘ { ( 0g𝑅 ) } ) ∈ ran 𝑉 )
27 18 26 eqeltrrd ( 𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉 )
28 13 27 syl ( 𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉 )
29 16 zarclsint ( ( 𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉𝑧 ≠ ∅ ) → 𝑧 ∈ ran 𝑉 )
30 12 28 29 ismred ( 𝑅 ∈ CRing → ran 𝑉 ∈ ( Moore ‘ 𝑃 ) )
31 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
32 23 31 lidl1 ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ dom 𝑉 )
33 13 32 syl ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) ∈ dom 𝑉 )
34 33 23 eleqtrdi ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) ∈ ( LIdeal ‘ 𝑅 ) )
35 16 31 zarcls1 ( ( 𝑅 ∈ CRing ∧ ( Base ‘ 𝑅 ) ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 𝑉 ‘ ( Base ‘ 𝑅 ) ) = ∅ ↔ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) )
36 31 35 mpbiri ( ( 𝑅 ∈ CRing ∧ ( Base ‘ 𝑅 ) ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑉 ‘ ( Base ‘ 𝑅 ) ) = ∅ )
37 34 36 mpdan ( 𝑅 ∈ CRing → ( 𝑉 ‘ ( Base ‘ 𝑅 ) ) = ∅ )
38 19 a1i ( 𝑅 ∈ CRing → Fun 𝑉 )
39 fvelrn ( ( Fun 𝑉 ∧ ( Base ‘ 𝑅 ) ∈ dom 𝑉 ) → ( 𝑉 ‘ ( Base ‘ 𝑅 ) ) ∈ ran 𝑉 )
40 38 33 39 syl2anc ( 𝑅 ∈ CRing → ( 𝑉 ‘ ( Base ‘ 𝑅 ) ) ∈ ran 𝑉 )
41 37 40 eqeltrrd ( 𝑅 ∈ CRing → ∅ ∈ ran 𝑉 )
42 16 zarclsun ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉𝑦 ∈ ran 𝑉 ) → ( 𝑥𝑦 ) ∈ ran 𝑉 )
43 eqid { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 } = { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 }
44 30 41 42 43 mretopd ( 𝑅 ∈ CRing → ( { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 } ∈ ( TopOn ‘ 𝑃 ) ∧ ran 𝑉 = ( Clsd ‘ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 } ) ) )
45 1 2 3 4 zarcls ( 𝑅 ∈ Ring → 𝐽 = { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 } )
46 13 45 syl ( 𝑅 ∈ CRing → 𝐽 = { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 } )
47 46 eleq1d ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ 𝑃 ) ↔ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 } ∈ ( TopOn ‘ 𝑃 ) ) )
48 46 fveq2d ( 𝑅 ∈ CRing → ( Clsd ‘ 𝐽 ) = ( Clsd ‘ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 } ) )
49 48 eqeq2d ( 𝑅 ∈ CRing → ( ran 𝑉 = ( Clsd ‘ 𝐽 ) ↔ ran 𝑉 = ( Clsd ‘ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 } ) ) )
50 47 49 anbi12d ( 𝑅 ∈ CRing → ( ( 𝐽 ∈ ( TopOn ‘ 𝑃 ) ∧ ran 𝑉 = ( Clsd ‘ 𝐽 ) ) ↔ ( { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 } ∈ ( TopOn ‘ 𝑃 ) ∧ ran 𝑉 = ( Clsd ‘ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃𝑠 ) ∈ ran 𝑉 } ) ) ) )
51 44 50 mpbird ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ 𝑃 ) ∧ ran 𝑉 = ( Clsd ‘ 𝐽 ) ) )