Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
2 |
|
zartop.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) |
3 |
|
zarcls.1 |
⊢ 𝑃 = ( PrmIdeal ‘ 𝑅 ) |
4 |
|
zarcls.2 |
⊢ 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) |
5 |
|
ssrab2 |
⊢ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 |
6 |
3
|
fvexi |
⊢ 𝑃 ∈ V |
7 |
6
|
elpw2 |
⊢ ( { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 ↔ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 ) |
8 |
5 7
|
mpbir |
⊢ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 |
9 |
8
|
rgenw |
⊢ ∀ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 |
10 |
4
|
rnmptss |
⊢ ( ∀ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃 ) |
11 |
9 10
|
ax-mp |
⊢ ran 𝑉 ⊆ 𝒫 𝑃 |
12 |
11
|
a1i |
⊢ ( 𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃 ) |
13 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
14 |
3
|
rabeqi |
⊢ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } |
15 |
14
|
mpteq2i |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
16 |
4 15
|
eqtri |
⊢ 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
18 |
16 3 17
|
zarcls0 |
⊢ ( 𝑅 ∈ Ring → ( 𝑉 ‘ { ( 0g ‘ 𝑅 ) } ) = 𝑃 ) |
19 |
4
|
funmpt2 |
⊢ Fun 𝑉 |
20 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
21 |
20 17
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { ( 0g ‘ 𝑅 ) } ∈ ( LIdeal ‘ 𝑅 ) ) |
22 |
6
|
rabex |
⊢ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ∈ V |
23 |
22 4
|
dmmpti |
⊢ dom 𝑉 = ( LIdeal ‘ 𝑅 ) |
24 |
21 23
|
eleqtrrdi |
⊢ ( 𝑅 ∈ Ring → { ( 0g ‘ 𝑅 ) } ∈ dom 𝑉 ) |
25 |
|
fvelrn |
⊢ ( ( Fun 𝑉 ∧ { ( 0g ‘ 𝑅 ) } ∈ dom 𝑉 ) → ( 𝑉 ‘ { ( 0g ‘ 𝑅 ) } ) ∈ ran 𝑉 ) |
26 |
19 24 25
|
sylancr |
⊢ ( 𝑅 ∈ Ring → ( 𝑉 ‘ { ( 0g ‘ 𝑅 ) } ) ∈ ran 𝑉 ) |
27 |
18 26
|
eqeltrrd |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉 ) |
28 |
13 27
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉 ) |
29 |
16
|
zarclsint |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉 ∧ 𝑧 ≠ ∅ ) → ∩ 𝑧 ∈ ran 𝑉 ) |
30 |
12 28 29
|
ismred |
⊢ ( 𝑅 ∈ CRing → ran 𝑉 ∈ ( Moore ‘ 𝑃 ) ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
32 |
23 31
|
lidl1 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ dom 𝑉 ) |
33 |
13 32
|
syl |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) ∈ dom 𝑉 ) |
34 |
33 23
|
eleqtrdi |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) ∈ ( LIdeal ‘ 𝑅 ) ) |
35 |
16 31
|
zarcls1 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( Base ‘ 𝑅 ) ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 𝑉 ‘ ( Base ‘ 𝑅 ) ) = ∅ ↔ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) ) |
36 |
31 35
|
mpbiri |
⊢ ( ( 𝑅 ∈ CRing ∧ ( Base ‘ 𝑅 ) ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑉 ‘ ( Base ‘ 𝑅 ) ) = ∅ ) |
37 |
34 36
|
mpdan |
⊢ ( 𝑅 ∈ CRing → ( 𝑉 ‘ ( Base ‘ 𝑅 ) ) = ∅ ) |
38 |
19
|
a1i |
⊢ ( 𝑅 ∈ CRing → Fun 𝑉 ) |
39 |
|
fvelrn |
⊢ ( ( Fun 𝑉 ∧ ( Base ‘ 𝑅 ) ∈ dom 𝑉 ) → ( 𝑉 ‘ ( Base ‘ 𝑅 ) ) ∈ ran 𝑉 ) |
40 |
38 33 39
|
syl2anc |
⊢ ( 𝑅 ∈ CRing → ( 𝑉 ‘ ( Base ‘ 𝑅 ) ) ∈ ran 𝑉 ) |
41 |
37 40
|
eqeltrrd |
⊢ ( 𝑅 ∈ CRing → ∅ ∈ ran 𝑉 ) |
42 |
16
|
zarclsun |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉 ∧ 𝑦 ∈ ran 𝑉 ) → ( 𝑥 ∪ 𝑦 ) ∈ ran 𝑉 ) |
43 |
|
eqid |
⊢ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } = { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } |
44 |
30 41 42 43
|
mretopd |
⊢ ( 𝑅 ∈ CRing → ( { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ∈ ( TopOn ‘ 𝑃 ) ∧ ran 𝑉 = ( Clsd ‘ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) ) ) |
45 |
1 2 3 4
|
zarcls |
⊢ ( 𝑅 ∈ Ring → 𝐽 = { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) |
46 |
13 45
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝐽 = { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) |
47 |
46
|
eleq1d |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ 𝑃 ) ↔ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ∈ ( TopOn ‘ 𝑃 ) ) ) |
48 |
46
|
fveq2d |
⊢ ( 𝑅 ∈ CRing → ( Clsd ‘ 𝐽 ) = ( Clsd ‘ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) ) |
49 |
48
|
eqeq2d |
⊢ ( 𝑅 ∈ CRing → ( ran 𝑉 = ( Clsd ‘ 𝐽 ) ↔ ran 𝑉 = ( Clsd ‘ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) ) ) |
50 |
47 49
|
anbi12d |
⊢ ( 𝑅 ∈ CRing → ( ( 𝐽 ∈ ( TopOn ‘ 𝑃 ) ∧ ran 𝑉 = ( Clsd ‘ 𝐽 ) ) ↔ ( { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ∈ ( TopOn ‘ 𝑃 ) ∧ ran 𝑉 = ( Clsd ‘ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) ) ) ) |
51 |
44 50
|
mpbird |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ 𝑃 ) ∧ ran 𝑉 = ( Clsd ‘ 𝐽 ) ) ) |