| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zartop.1 | ⊢ 𝑆  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | zartop.2 | ⊢ 𝐽  =  ( TopOpen ‘ 𝑆 ) | 
						
							| 3 |  | zarcls.1 | ⊢ 𝑃  =  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 4 |  | zarcls.2 | ⊢ 𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 5 |  | ssrab2 | ⊢ { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ⊆  𝑃 | 
						
							| 6 | 3 | fvexi | ⊢ 𝑃  ∈  V | 
						
							| 7 | 6 | elpw2 | ⊢ ( { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ∈  𝒫  𝑃  ↔  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ⊆  𝑃 ) | 
						
							| 8 | 5 7 | mpbir | ⊢ { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ∈  𝒫  𝑃 | 
						
							| 9 | 8 | rgenw | ⊢ ∀ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ∈  𝒫  𝑃 | 
						
							| 10 | 4 | rnmptss | ⊢ ( ∀ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ∈  𝒫  𝑃  →  ran  𝑉  ⊆  𝒫  𝑃 ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ran  𝑉  ⊆  𝒫  𝑃 | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑅  ∈  CRing  →  ran  𝑉  ⊆  𝒫  𝑃 ) | 
						
							| 13 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 14 | 3 | rabeqi | ⊢ { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } | 
						
							| 15 | 14 | mpteq2i | ⊢ ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } )  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 16 | 4 15 | eqtri | ⊢ 𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 18 | 16 3 17 | zarcls0 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑉 ‘ { ( 0g ‘ 𝑅 ) } )  =  𝑃 ) | 
						
							| 19 | 4 | funmpt2 | ⊢ Fun  𝑉 | 
						
							| 20 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 21 | 20 17 | lidl0 | ⊢ ( 𝑅  ∈  Ring  →  { ( 0g ‘ 𝑅 ) }  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 22 | 6 | rabex | ⊢ { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ∈  V | 
						
							| 23 | 22 4 | dmmpti | ⊢ dom  𝑉  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 24 | 21 23 | eleqtrrdi | ⊢ ( 𝑅  ∈  Ring  →  { ( 0g ‘ 𝑅 ) }  ∈  dom  𝑉 ) | 
						
							| 25 |  | fvelrn | ⊢ ( ( Fun  𝑉  ∧  { ( 0g ‘ 𝑅 ) }  ∈  dom  𝑉 )  →  ( 𝑉 ‘ { ( 0g ‘ 𝑅 ) } )  ∈  ran  𝑉 ) | 
						
							| 26 | 19 24 25 | sylancr | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑉 ‘ { ( 0g ‘ 𝑅 ) } )  ∈  ran  𝑉 ) | 
						
							| 27 | 18 26 | eqeltrrd | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  ran  𝑉 ) | 
						
							| 28 | 13 27 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  ran  𝑉 ) | 
						
							| 29 | 16 | zarclsint | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑧  ⊆  ran  𝑉  ∧  𝑧  ≠  ∅ )  →  ∩  𝑧  ∈  ran  𝑉 ) | 
						
							| 30 | 12 28 29 | ismred | ⊢ ( 𝑅  ∈  CRing  →  ran  𝑉  ∈  ( Moore ‘ 𝑃 ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 32 | 23 31 | lidl1 | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ 𝑅 )  ∈  dom  𝑉 ) | 
						
							| 33 | 13 32 | syl | ⊢ ( 𝑅  ∈  CRing  →  ( Base ‘ 𝑅 )  ∈  dom  𝑉 ) | 
						
							| 34 | 33 23 | eleqtrdi | ⊢ ( 𝑅  ∈  CRing  →  ( Base ‘ 𝑅 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 35 | 16 31 | zarcls1 | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( Base ‘ 𝑅 )  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( ( 𝑉 ‘ ( Base ‘ 𝑅 ) )  =  ∅  ↔  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) ) ) | 
						
							| 36 | 31 35 | mpbiri | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( Base ‘ 𝑅 )  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝑉 ‘ ( Base ‘ 𝑅 ) )  =  ∅ ) | 
						
							| 37 | 34 36 | mpdan | ⊢ ( 𝑅  ∈  CRing  →  ( 𝑉 ‘ ( Base ‘ 𝑅 ) )  =  ∅ ) | 
						
							| 38 | 19 | a1i | ⊢ ( 𝑅  ∈  CRing  →  Fun  𝑉 ) | 
						
							| 39 |  | fvelrn | ⊢ ( ( Fun  𝑉  ∧  ( Base ‘ 𝑅 )  ∈  dom  𝑉 )  →  ( 𝑉 ‘ ( Base ‘ 𝑅 ) )  ∈  ran  𝑉 ) | 
						
							| 40 | 38 33 39 | syl2anc | ⊢ ( 𝑅  ∈  CRing  →  ( 𝑉 ‘ ( Base ‘ 𝑅 ) )  ∈  ran  𝑉 ) | 
						
							| 41 | 37 40 | eqeltrrd | ⊢ ( 𝑅  ∈  CRing  →  ∅  ∈  ran  𝑉 ) | 
						
							| 42 | 16 | zarclsun | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ran  𝑉  ∧  𝑦  ∈  ran  𝑉 )  →  ( 𝑥  ∪  𝑦 )  ∈  ran  𝑉 ) | 
						
							| 43 |  | eqid | ⊢ { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 }  =  { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } | 
						
							| 44 | 30 41 42 43 | mretopd | ⊢ ( 𝑅  ∈  CRing  →  ( { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 }  ∈  ( TopOn ‘ 𝑃 )  ∧  ran  𝑉  =  ( Clsd ‘ { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } ) ) ) | 
						
							| 45 | 1 2 3 4 | zarcls | ⊢ ( 𝑅  ∈  Ring  →  𝐽  =  { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } ) | 
						
							| 46 | 13 45 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝐽  =  { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } ) | 
						
							| 47 | 46 | eleq1d | ⊢ ( 𝑅  ∈  CRing  →  ( 𝐽  ∈  ( TopOn ‘ 𝑃 )  ↔  { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 }  ∈  ( TopOn ‘ 𝑃 ) ) ) | 
						
							| 48 | 46 | fveq2d | ⊢ ( 𝑅  ∈  CRing  →  ( Clsd ‘ 𝐽 )  =  ( Clsd ‘ { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } ) ) | 
						
							| 49 | 48 | eqeq2d | ⊢ ( 𝑅  ∈  CRing  →  ( ran  𝑉  =  ( Clsd ‘ 𝐽 )  ↔  ran  𝑉  =  ( Clsd ‘ { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } ) ) ) | 
						
							| 50 | 47 49 | anbi12d | ⊢ ( 𝑅  ∈  CRing  →  ( ( 𝐽  ∈  ( TopOn ‘ 𝑃 )  ∧  ran  𝑉  =  ( Clsd ‘ 𝐽 ) )  ↔  ( { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 }  ∈  ( TopOn ‘ 𝑃 )  ∧  ran  𝑉  =  ( Clsd ‘ { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } ) ) ) ) | 
						
							| 51 | 44 50 | mpbird | ⊢ ( 𝑅  ∈  CRing  →  ( 𝐽  ∈  ( TopOn ‘ 𝑃 )  ∧  ran  𝑉  =  ( Clsd ‘ 𝐽 ) ) ) |