| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zartop.1 |  |-  S = ( Spec ` R ) | 
						
							| 2 |  | zartop.2 |  |-  J = ( TopOpen ` S ) | 
						
							| 3 |  | zarcls.1 |  |-  P = ( PrmIdeal ` R ) | 
						
							| 4 |  | zarcls.2 |  |-  V = ( i e. ( LIdeal ` R ) |-> { j e. P | i C_ j } ) | 
						
							| 5 |  | ssrab2 |  |-  { j e. P | i C_ j } C_ P | 
						
							| 6 | 3 | fvexi |  |-  P e. _V | 
						
							| 7 | 6 | elpw2 |  |-  ( { j e. P | i C_ j } e. ~P P <-> { j e. P | i C_ j } C_ P ) | 
						
							| 8 | 5 7 | mpbir |  |-  { j e. P | i C_ j } e. ~P P | 
						
							| 9 | 8 | rgenw |  |-  A. i e. ( LIdeal ` R ) { j e. P | i C_ j } e. ~P P | 
						
							| 10 | 4 | rnmptss |  |-  ( A. i e. ( LIdeal ` R ) { j e. P | i C_ j } e. ~P P -> ran V C_ ~P P ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ran V C_ ~P P | 
						
							| 12 | 11 | a1i |  |-  ( R e. CRing -> ran V C_ ~P P ) | 
						
							| 13 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 14 | 3 | rabeqi |  |-  { j e. P | i C_ j } = { j e. ( PrmIdeal ` R ) | i C_ j } | 
						
							| 15 | 14 | mpteq2i |  |-  ( i e. ( LIdeal ` R ) |-> { j e. P | i C_ j } ) = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 16 | 4 15 | eqtri |  |-  V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 18 | 16 3 17 | zarcls0 |  |-  ( R e. Ring -> ( V ` { ( 0g ` R ) } ) = P ) | 
						
							| 19 | 4 | funmpt2 |  |-  Fun V | 
						
							| 20 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 21 | 20 17 | lidl0 |  |-  ( R e. Ring -> { ( 0g ` R ) } e. ( LIdeal ` R ) ) | 
						
							| 22 | 6 | rabex |  |-  { j e. P | i C_ j } e. _V | 
						
							| 23 | 22 4 | dmmpti |  |-  dom V = ( LIdeal ` R ) | 
						
							| 24 | 21 23 | eleqtrrdi |  |-  ( R e. Ring -> { ( 0g ` R ) } e. dom V ) | 
						
							| 25 |  | fvelrn |  |-  ( ( Fun V /\ { ( 0g ` R ) } e. dom V ) -> ( V ` { ( 0g ` R ) } ) e. ran V ) | 
						
							| 26 | 19 24 25 | sylancr |  |-  ( R e. Ring -> ( V ` { ( 0g ` R ) } ) e. ran V ) | 
						
							| 27 | 18 26 | eqeltrrd |  |-  ( R e. Ring -> P e. ran V ) | 
						
							| 28 | 13 27 | syl |  |-  ( R e. CRing -> P e. ran V ) | 
						
							| 29 | 16 | zarclsint |  |-  ( ( R e. CRing /\ z C_ ran V /\ z =/= (/) ) -> |^| z e. ran V ) | 
						
							| 30 | 12 28 29 | ismred |  |-  ( R e. CRing -> ran V e. ( Moore ` P ) ) | 
						
							| 31 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 32 | 23 31 | lidl1 |  |-  ( R e. Ring -> ( Base ` R ) e. dom V ) | 
						
							| 33 | 13 32 | syl |  |-  ( R e. CRing -> ( Base ` R ) e. dom V ) | 
						
							| 34 | 33 23 | eleqtrdi |  |-  ( R e. CRing -> ( Base ` R ) e. ( LIdeal ` R ) ) | 
						
							| 35 | 16 31 | zarcls1 |  |-  ( ( R e. CRing /\ ( Base ` R ) e. ( LIdeal ` R ) ) -> ( ( V ` ( Base ` R ) ) = (/) <-> ( Base ` R ) = ( Base ` R ) ) ) | 
						
							| 36 | 31 35 | mpbiri |  |-  ( ( R e. CRing /\ ( Base ` R ) e. ( LIdeal ` R ) ) -> ( V ` ( Base ` R ) ) = (/) ) | 
						
							| 37 | 34 36 | mpdan |  |-  ( R e. CRing -> ( V ` ( Base ` R ) ) = (/) ) | 
						
							| 38 | 19 | a1i |  |-  ( R e. CRing -> Fun V ) | 
						
							| 39 |  | fvelrn |  |-  ( ( Fun V /\ ( Base ` R ) e. dom V ) -> ( V ` ( Base ` R ) ) e. ran V ) | 
						
							| 40 | 38 33 39 | syl2anc |  |-  ( R e. CRing -> ( V ` ( Base ` R ) ) e. ran V ) | 
						
							| 41 | 37 40 | eqeltrrd |  |-  ( R e. CRing -> (/) e. ran V ) | 
						
							| 42 | 16 | zarclsun |  |-  ( ( R e. CRing /\ x e. ran V /\ y e. ran V ) -> ( x u. y ) e. ran V ) | 
						
							| 43 |  | eqid |  |-  { s e. ~P P | ( P \ s ) e. ran V } = { s e. ~P P | ( P \ s ) e. ran V } | 
						
							| 44 | 30 41 42 43 | mretopd |  |-  ( R e. CRing -> ( { s e. ~P P | ( P \ s ) e. ran V } e. ( TopOn ` P ) /\ ran V = ( Clsd ` { s e. ~P P | ( P \ s ) e. ran V } ) ) ) | 
						
							| 45 | 1 2 3 4 | zarcls |  |-  ( R e. Ring -> J = { s e. ~P P | ( P \ s ) e. ran V } ) | 
						
							| 46 | 13 45 | syl |  |-  ( R e. CRing -> J = { s e. ~P P | ( P \ s ) e. ran V } ) | 
						
							| 47 | 46 | eleq1d |  |-  ( R e. CRing -> ( J e. ( TopOn ` P ) <-> { s e. ~P P | ( P \ s ) e. ran V } e. ( TopOn ` P ) ) ) | 
						
							| 48 | 46 | fveq2d |  |-  ( R e. CRing -> ( Clsd ` J ) = ( Clsd ` { s e. ~P P | ( P \ s ) e. ran V } ) ) | 
						
							| 49 | 48 | eqeq2d |  |-  ( R e. CRing -> ( ran V = ( Clsd ` J ) <-> ran V = ( Clsd ` { s e. ~P P | ( P \ s ) e. ran V } ) ) ) | 
						
							| 50 | 47 49 | anbi12d |  |-  ( R e. CRing -> ( ( J e. ( TopOn ` P ) /\ ran V = ( Clsd ` J ) ) <-> ( { s e. ~P P | ( P \ s ) e. ran V } e. ( TopOn ` P ) /\ ran V = ( Clsd ` { s e. ~P P | ( P \ s ) e. ran V } ) ) ) ) | 
						
							| 51 | 44 50 | mpbird |  |-  ( R e. CRing -> ( J e. ( TopOn ` P ) /\ ran V = ( Clsd ` J ) ) ) |