Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
|- S = ( Spec ` R ) |
2 |
|
zartop.2 |
|- J = ( TopOpen ` S ) |
3 |
|
zarcls.1 |
|- P = ( PrmIdeal ` R ) |
4 |
|
zarcls.2 |
|- V = ( i e. ( LIdeal ` R ) |-> { j e. P | i C_ j } ) |
5 |
|
ssrab2 |
|- { j e. P | i C_ j } C_ P |
6 |
3
|
fvexi |
|- P e. _V |
7 |
6
|
elpw2 |
|- ( { j e. P | i C_ j } e. ~P P <-> { j e. P | i C_ j } C_ P ) |
8 |
5 7
|
mpbir |
|- { j e. P | i C_ j } e. ~P P |
9 |
8
|
rgenw |
|- A. i e. ( LIdeal ` R ) { j e. P | i C_ j } e. ~P P |
10 |
4
|
rnmptss |
|- ( A. i e. ( LIdeal ` R ) { j e. P | i C_ j } e. ~P P -> ran V C_ ~P P ) |
11 |
9 10
|
ax-mp |
|- ran V C_ ~P P |
12 |
11
|
a1i |
|- ( R e. CRing -> ran V C_ ~P P ) |
13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
14 |
3
|
rabeqi |
|- { j e. P | i C_ j } = { j e. ( PrmIdeal ` R ) | i C_ j } |
15 |
14
|
mpteq2i |
|- ( i e. ( LIdeal ` R ) |-> { j e. P | i C_ j } ) = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) |
16 |
4 15
|
eqtri |
|- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) |
17 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
18 |
16 3 17
|
zarcls0 |
|- ( R e. Ring -> ( V ` { ( 0g ` R ) } ) = P ) |
19 |
4
|
funmpt2 |
|- Fun V |
20 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
21 |
20 17
|
lidl0 |
|- ( R e. Ring -> { ( 0g ` R ) } e. ( LIdeal ` R ) ) |
22 |
6
|
rabex |
|- { j e. P | i C_ j } e. _V |
23 |
22 4
|
dmmpti |
|- dom V = ( LIdeal ` R ) |
24 |
21 23
|
eleqtrrdi |
|- ( R e. Ring -> { ( 0g ` R ) } e. dom V ) |
25 |
|
fvelrn |
|- ( ( Fun V /\ { ( 0g ` R ) } e. dom V ) -> ( V ` { ( 0g ` R ) } ) e. ran V ) |
26 |
19 24 25
|
sylancr |
|- ( R e. Ring -> ( V ` { ( 0g ` R ) } ) e. ran V ) |
27 |
18 26
|
eqeltrrd |
|- ( R e. Ring -> P e. ran V ) |
28 |
13 27
|
syl |
|- ( R e. CRing -> P e. ran V ) |
29 |
16
|
zarclsint |
|- ( ( R e. CRing /\ z C_ ran V /\ z =/= (/) ) -> |^| z e. ran V ) |
30 |
12 28 29
|
ismred |
|- ( R e. CRing -> ran V e. ( Moore ` P ) ) |
31 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
32 |
23 31
|
lidl1 |
|- ( R e. Ring -> ( Base ` R ) e. dom V ) |
33 |
13 32
|
syl |
|- ( R e. CRing -> ( Base ` R ) e. dom V ) |
34 |
33 23
|
eleqtrdi |
|- ( R e. CRing -> ( Base ` R ) e. ( LIdeal ` R ) ) |
35 |
16 31
|
zarcls1 |
|- ( ( R e. CRing /\ ( Base ` R ) e. ( LIdeal ` R ) ) -> ( ( V ` ( Base ` R ) ) = (/) <-> ( Base ` R ) = ( Base ` R ) ) ) |
36 |
31 35
|
mpbiri |
|- ( ( R e. CRing /\ ( Base ` R ) e. ( LIdeal ` R ) ) -> ( V ` ( Base ` R ) ) = (/) ) |
37 |
34 36
|
mpdan |
|- ( R e. CRing -> ( V ` ( Base ` R ) ) = (/) ) |
38 |
19
|
a1i |
|- ( R e. CRing -> Fun V ) |
39 |
|
fvelrn |
|- ( ( Fun V /\ ( Base ` R ) e. dom V ) -> ( V ` ( Base ` R ) ) e. ran V ) |
40 |
38 33 39
|
syl2anc |
|- ( R e. CRing -> ( V ` ( Base ` R ) ) e. ran V ) |
41 |
37 40
|
eqeltrrd |
|- ( R e. CRing -> (/) e. ran V ) |
42 |
16
|
zarclsun |
|- ( ( R e. CRing /\ x e. ran V /\ y e. ran V ) -> ( x u. y ) e. ran V ) |
43 |
|
eqid |
|- { s e. ~P P | ( P \ s ) e. ran V } = { s e. ~P P | ( P \ s ) e. ran V } |
44 |
30 41 42 43
|
mretopd |
|- ( R e. CRing -> ( { s e. ~P P | ( P \ s ) e. ran V } e. ( TopOn ` P ) /\ ran V = ( Clsd ` { s e. ~P P | ( P \ s ) e. ran V } ) ) ) |
45 |
1 2 3 4
|
zarcls |
|- ( R e. Ring -> J = { s e. ~P P | ( P \ s ) e. ran V } ) |
46 |
13 45
|
syl |
|- ( R e. CRing -> J = { s e. ~P P | ( P \ s ) e. ran V } ) |
47 |
46
|
eleq1d |
|- ( R e. CRing -> ( J e. ( TopOn ` P ) <-> { s e. ~P P | ( P \ s ) e. ran V } e. ( TopOn ` P ) ) ) |
48 |
46
|
fveq2d |
|- ( R e. CRing -> ( Clsd ` J ) = ( Clsd ` { s e. ~P P | ( P \ s ) e. ran V } ) ) |
49 |
48
|
eqeq2d |
|- ( R e. CRing -> ( ran V = ( Clsd ` J ) <-> ran V = ( Clsd ` { s e. ~P P | ( P \ s ) e. ran V } ) ) ) |
50 |
47 49
|
anbi12d |
|- ( R e. CRing -> ( ( J e. ( TopOn ` P ) /\ ran V = ( Clsd ` J ) ) <-> ( { s e. ~P P | ( P \ s ) e. ran V } e. ( TopOn ` P ) /\ ran V = ( Clsd ` { s e. ~P P | ( P \ s ) e. ran V } ) ) ) ) |
51 |
44 50
|
mpbird |
|- ( R e. CRing -> ( J e. ( TopOn ` P ) /\ ran V = ( Clsd ` J ) ) ) |