| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zartop.1 |
|- S = ( Spec ` R ) |
| 2 |
|
zartop.2 |
|- J = ( TopOpen ` S ) |
| 3 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
| 4 |
|
sseq1 |
|- ( i = k -> ( i C_ j <-> k C_ j ) ) |
| 5 |
4
|
rabbidv |
|- ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | k C_ j } ) |
| 6 |
5
|
cbvmptv |
|- ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( k e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | k C_ j } ) |
| 7 |
1 2 3 6
|
zartopn |
|- ( R e. CRing -> ( J e. ( TopOn ` ( PrmIdeal ` R ) ) /\ ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( Clsd ` J ) ) ) |
| 8 |
7
|
simpld |
|- ( R e. CRing -> J e. ( TopOn ` ( PrmIdeal ` R ) ) ) |
| 9 |
|
topontop |
|- ( J e. ( TopOn ` ( PrmIdeal ` R ) ) -> J e. Top ) |
| 10 |
8 9
|
syl |
|- ( R e. CRing -> J e. Top ) |