Metamath Proof Explorer


Theorem zartop

Description: The Zariski topology is a topology. Proposition 1.1.2 of EGA p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1
|- S = ( Spec ` R )
zartop.2
|- J = ( TopOpen ` S )
Assertion zartop
|- ( R e. CRing -> J e. Top )

Proof

Step Hyp Ref Expression
1 zartop.1
 |-  S = ( Spec ` R )
2 zartop.2
 |-  J = ( TopOpen ` S )
3 eqid
 |-  ( PrmIdeal ` R ) = ( PrmIdeal ` R )
4 sseq1
 |-  ( i = k -> ( i C_ j <-> k C_ j ) )
5 4 rabbidv
 |-  ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | k C_ j } )
6 5 cbvmptv
 |-  ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( k e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | k C_ j } )
7 1 2 3 6 zartopn
 |-  ( R e. CRing -> ( J e. ( TopOn ` ( PrmIdeal ` R ) ) /\ ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( Clsd ` J ) ) )
8 7 simpld
 |-  ( R e. CRing -> J e. ( TopOn ` ( PrmIdeal ` R ) ) )
9 topontop
 |-  ( J e. ( TopOn ` ( PrmIdeal ` R ) ) -> J e. Top )
10 8 9 syl
 |-  ( R e. CRing -> J e. Top )