Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
|- S = ( Spec ` R ) |
2 |
|
zartop.2 |
|- J = ( TopOpen ` S ) |
3 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
4 |
|
sseq1 |
|- ( i = k -> ( i C_ j <-> k C_ j ) ) |
5 |
4
|
rabbidv |
|- ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | k C_ j } ) |
6 |
5
|
cbvmptv |
|- ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( k e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | k C_ j } ) |
7 |
1 2 3 6
|
zartopn |
|- ( R e. CRing -> ( J e. ( TopOn ` ( PrmIdeal ` R ) ) /\ ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( Clsd ` J ) ) ) |
8 |
7
|
simpld |
|- ( R e. CRing -> J e. ( TopOn ` ( PrmIdeal ` R ) ) ) |
9 |
|
topontop |
|- ( J e. ( TopOn ` ( PrmIdeal ` R ) ) -> J e. Top ) |
10 |
8 9
|
syl |
|- ( R e. CRing -> J e. Top ) |