| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zartop.1 |  |-  S = ( Spec ` R ) | 
						
							| 2 |  | zartop.2 |  |-  J = ( TopOpen ` S ) | 
						
							| 3 |  | eqid |  |-  ( PrmIdeal ` R ) = ( PrmIdeal ` R ) | 
						
							| 4 |  | sseq1 |  |-  ( i = k -> ( i C_ j <-> k C_ j ) ) | 
						
							| 5 | 4 | rabbidv |  |-  ( i = k -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | k C_ j } ) | 
						
							| 6 | 5 | cbvmptv |  |-  ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( k e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | k C_ j } ) | 
						
							| 7 | 1 2 3 6 | zartopn |  |-  ( R e. CRing -> ( J e. ( TopOn ` ( PrmIdeal ` R ) ) /\ ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) = ( Clsd ` J ) ) ) | 
						
							| 8 | 7 | simpld |  |-  ( R e. CRing -> J e. ( TopOn ` ( PrmIdeal ` R ) ) ) | 
						
							| 9 |  | topontop |  |-  ( J e. ( TopOn ` ( PrmIdeal ` R ) ) -> J e. Top ) | 
						
							| 10 | 8 9 | syl |  |-  ( R e. CRing -> J e. Top ) |