| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zartop.1 | ⊢ 𝑆  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | zartop.2 | ⊢ 𝐽  =  ( TopOpen ‘ 𝑆 ) | 
						
							| 3 |  | eqid | ⊢ ( PrmIdeal ‘ 𝑅 )  =  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 4 |  | sseq1 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖  ⊆  𝑗  ↔  𝑘  ⊆  𝑗 ) ) | 
						
							| 5 | 4 | rabbidv | ⊢ ( 𝑖  =  𝑘  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) | 
						
							| 6 | 5 | cbvmptv | ⊢ ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } )  =  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) | 
						
							| 7 | 1 2 3 6 | zartopn | ⊢ ( 𝑅  ∈  CRing  →  ( 𝐽  ∈  ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) )  ∧  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } )  =  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( 𝑅  ∈  CRing  →  𝐽  ∈  ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 9 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) )  →  𝐽  ∈  Top ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝐽  ∈  Top ) |