Metamath Proof Explorer


Theorem zartop

Description: The Zariski topology is a topology. Proposition 1.1.2 of EGA p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1 𝑆 = ( Spec ‘ 𝑅 )
zartop.2 𝐽 = ( TopOpen ‘ 𝑆 )
Assertion zartop ( 𝑅 ∈ CRing → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 zartop.1 𝑆 = ( Spec ‘ 𝑅 )
2 zartop.2 𝐽 = ( TopOpen ‘ 𝑆 )
3 eqid ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 )
4 sseq1 ( 𝑖 = 𝑘 → ( 𝑖𝑗𝑘𝑗 ) )
5 4 rabbidv ( 𝑖 = 𝑘 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } )
6 5 cbvmptv ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) = ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } )
7 1 2 3 6 zartopn ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ∧ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) = ( Clsd ‘ 𝐽 ) ) )
8 7 simpld ( 𝑅 ∈ CRing → 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) )
9 topontop ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) → 𝐽 ∈ Top )
10 8 9 syl ( 𝑅 ∈ CRing → 𝐽 ∈ Top )