Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
2 |
|
zartop.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) |
3 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
4 |
|
sseq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 ⊆ 𝑗 ↔ 𝑘 ⊆ 𝑗 ) ) |
5 |
4
|
rabbidv |
⊢ ( 𝑖 = 𝑘 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) |
6 |
5
|
cbvmptv |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) = ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) |
7 |
1 2 3 6
|
zartopn |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ∧ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) = ( Clsd ‘ 𝐽 ) ) ) |
8 |
7
|
simpld |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ) |
9 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) → 𝐽 ∈ Top ) |
10 |
8 9
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ Top ) |