Metamath Proof Explorer


Theorem zartop

Description: The Zariski topology is a topology. Proposition 1.1.2 of EGA p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1 S = Spec R
zartop.2 J = TopOpen S
Assertion zartop R CRing J Top

Proof

Step Hyp Ref Expression
1 zartop.1 S = Spec R
2 zartop.2 J = TopOpen S
3 eqid PrmIdeal R = PrmIdeal R
4 sseq1 i = k i j k j
5 4 rabbidv i = k j PrmIdeal R | i j = j PrmIdeal R | k j
6 5 cbvmptv i LIdeal R j PrmIdeal R | i j = k LIdeal R j PrmIdeal R | k j
7 1 2 3 6 zartopn R CRing J TopOn PrmIdeal R ran i LIdeal R j PrmIdeal R | i j = Clsd J
8 7 simpld R CRing J TopOn PrmIdeal R
9 topontop J TopOn PrmIdeal R J Top
10 8 9 syl R CRing J Top