Description: The points of the Zariski topology are the prime ideals. (Contributed by Thierry Arnoux, 16-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zartop.1 | ⊢ 𝑆 = ( Spec ‘ 𝑅 ) | |
| zartop.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) | ||
| zartop.3 | ⊢ 𝑃 = ( PrmIdeal ‘ 𝑅 ) | ||
| Assertion | zartopon | ⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ ( TopOn ‘ 𝑃 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zartop.1 | ⊢ 𝑆 = ( Spec ‘ 𝑅 ) | |
| 2 | zartop.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) | |
| 3 | zartop.3 | ⊢ 𝑃 = ( PrmIdeal ‘ 𝑅 ) | |
| 4 | sseq1 | ⊢ ( 𝑖 = 𝑘 → ( 𝑖 ⊆ 𝑗 ↔ 𝑘 ⊆ 𝑗 ) ) | |
| 5 | 4 | rabbidv | ⊢ ( 𝑖 = 𝑘 → { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ 𝑃 ∣ 𝑘 ⊆ 𝑗 } ) | 
| 6 | 5 | cbvmptv | ⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) = ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ 𝑘 ⊆ 𝑗 } ) | 
| 7 | 1 2 3 6 | zartopn | ⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ 𝑃 ) ∧ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) = ( Clsd ‘ 𝐽 ) ) ) | 
| 8 | 7 | simpld | ⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ ( TopOn ‘ 𝑃 ) ) |