Metamath Proof Explorer


Theorem zartopon

Description: The points of the Zariski topology are the prime ideals. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1
|- S = ( Spec ` R )
zartop.2
|- J = ( TopOpen ` S )
zartop.3
|- P = ( PrmIdeal ` R )
Assertion zartopon
|- ( R e. CRing -> J e. ( TopOn ` P ) )

Proof

Step Hyp Ref Expression
1 zartop.1
 |-  S = ( Spec ` R )
2 zartop.2
 |-  J = ( TopOpen ` S )
3 zartop.3
 |-  P = ( PrmIdeal ` R )
4 sseq1
 |-  ( i = k -> ( i C_ j <-> k C_ j ) )
5 4 rabbidv
 |-  ( i = k -> { j e. P | i C_ j } = { j e. P | k C_ j } )
6 5 cbvmptv
 |-  ( i e. ( LIdeal ` R ) |-> { j e. P | i C_ j } ) = ( k e. ( LIdeal ` R ) |-> { j e. P | k C_ j } )
7 1 2 3 6 zartopn
 |-  ( R e. CRing -> ( J e. ( TopOn ` P ) /\ ran ( i e. ( LIdeal ` R ) |-> { j e. P | i C_ j } ) = ( Clsd ` J ) ) )
8 7 simpld
 |-  ( R e. CRing -> J e. ( TopOn ` P ) )