Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
|- S = ( Spec ` R ) |
2 |
|
zartop.2 |
|- J = ( TopOpen ` S ) |
3 |
|
zar0ring.b |
|- B = ( Base ` R ) |
4 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
5 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
6 |
|
eqid |
|- ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) |
7 |
1 4 5 6
|
rspectopn |
|- ( R e. Ring -> ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( TopOpen ` S ) ) |
8 |
7
|
adantr |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( TopOpen ` S ) ) |
9 |
2 8
|
eqtr4id |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> J = ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) ) |
10 |
|
fvex |
|- ( PrmIdeal ` R ) e. _V |
11 |
10
|
rabex |
|- { j e. ( PrmIdeal ` R ) | -. i C_ j } e. _V |
12 |
|
eqid |
|- ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) |
13 |
11 12
|
fnmpti |
|- ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) Fn ( LIdeal ` R ) |
14 |
13
|
a1i |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) Fn ( LIdeal ` R ) ) |
15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
16 |
3 15
|
0ringidl |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( LIdeal ` R ) = { { ( 0g ` R ) } } ) |
17 |
|
snex |
|- { ( 0g ` R ) } e. _V |
18 |
17
|
a1i |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> { ( 0g ` R ) } e. _V ) |
19 |
18
|
snn0d |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> { { ( 0g ` R ) } } =/= (/) ) |
20 |
16 19
|
eqnetrd |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( LIdeal ` R ) =/= (/) ) |
21 |
3
|
0ringprmidl |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( PrmIdeal ` R ) = (/) ) |
22 |
21
|
rabeqdv |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> { j e. ( PrmIdeal ` R ) | -. i C_ j } = { j e. (/) | -. i C_ j } ) |
23 |
|
rab0 |
|- { j e. (/) | -. i C_ j } = (/) |
24 |
22 23
|
eqtrdi |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> { j e. ( PrmIdeal ` R ) | -. i C_ j } = (/) ) |
25 |
24
|
mpteq2dv |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( i e. ( LIdeal ` R ) |-> (/) ) ) |
26 |
|
fconstmpt |
|- ( ( LIdeal ` R ) X. { (/) } ) = ( i e. ( LIdeal ` R ) |-> (/) ) |
27 |
25 26
|
eqtr4di |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( ( LIdeal ` R ) X. { (/) } ) ) |
28 |
|
fconst5 |
|- ( ( ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) Fn ( LIdeal ` R ) /\ ( LIdeal ` R ) =/= (/) ) -> ( ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( ( LIdeal ` R ) X. { (/) } ) <-> ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = { (/) } ) ) |
29 |
28
|
biimpa |
|- ( ( ( ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) Fn ( LIdeal ` R ) /\ ( LIdeal ` R ) =/= (/) ) /\ ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( ( LIdeal ` R ) X. { (/) } ) ) -> ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = { (/) } ) |
30 |
14 20 27 29
|
syl21anc |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = { (/) } ) |
31 |
9 30
|
eqtrd |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> J = { (/) } ) |