Metamath Proof Explorer


Theorem zar0ring

Description: The Zariski Topology of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024)

Ref Expression
Hypotheses zartop.1
|- S = ( Spec ` R )
zartop.2
|- J = ( TopOpen ` S )
zar0ring.b
|- B = ( Base ` R )
Assertion zar0ring
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> J = { (/) } )

Proof

Step Hyp Ref Expression
1 zartop.1
 |-  S = ( Spec ` R )
2 zartop.2
 |-  J = ( TopOpen ` S )
3 zar0ring.b
 |-  B = ( Base ` R )
4 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
5 eqid
 |-  ( PrmIdeal ` R ) = ( PrmIdeal ` R )
6 eqid
 |-  ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } )
7 1 4 5 6 rspectopn
 |-  ( R e. Ring -> ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( TopOpen ` S ) )
8 7 adantr
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( TopOpen ` S ) )
9 2 8 eqtr4id
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> J = ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) )
10 fvex
 |-  ( PrmIdeal ` R ) e. _V
11 10 rabex
 |-  { j e. ( PrmIdeal ` R ) | -. i C_ j } e. _V
12 eqid
 |-  ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } )
13 11 12 fnmpti
 |-  ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) Fn ( LIdeal ` R )
14 13 a1i
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) Fn ( LIdeal ` R ) )
15 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
16 3 15 0ringidl
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( LIdeal ` R ) = { { ( 0g ` R ) } } )
17 snex
 |-  { ( 0g ` R ) } e. _V
18 17 a1i
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> { ( 0g ` R ) } e. _V )
19 18 snn0d
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> { { ( 0g ` R ) } } =/= (/) )
20 16 19 eqnetrd
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( LIdeal ` R ) =/= (/) )
21 3 0ringprmidl
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( PrmIdeal ` R ) = (/) )
22 21 rabeqdv
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> { j e. ( PrmIdeal ` R ) | -. i C_ j } = { j e. (/) | -. i C_ j } )
23 rab0
 |-  { j e. (/) | -. i C_ j } = (/)
24 22 23 eqtrdi
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> { j e. ( PrmIdeal ` R ) | -. i C_ j } = (/) )
25 24 mpteq2dv
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( i e. ( LIdeal ` R ) |-> (/) ) )
26 fconstmpt
 |-  ( ( LIdeal ` R ) X. { (/) } ) = ( i e. ( LIdeal ` R ) |-> (/) )
27 25 26 eqtr4di
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( ( LIdeal ` R ) X. { (/) } ) )
28 fconst5
 |-  ( ( ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) Fn ( LIdeal ` R ) /\ ( LIdeal ` R ) =/= (/) ) -> ( ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( ( LIdeal ` R ) X. { (/) } ) <-> ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = { (/) } ) )
29 28 biimpa
 |-  ( ( ( ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) Fn ( LIdeal ` R ) /\ ( LIdeal ` R ) =/= (/) ) /\ ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = ( ( LIdeal ` R ) X. { (/) } ) ) -> ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = { (/) } )
30 14 20 27 29 syl21anc
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ran ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | -. i C_ j } ) = { (/) } )
31 9 30 eqtrd
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> J = { (/) } )