Metamath Proof Explorer


Theorem zar0ring

Description: The Zariski Topology of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024)

Ref Expression
Hypotheses zartop.1 S = Spec R
zartop.2 J = TopOpen S
zar0ring.b B = Base R
Assertion zar0ring R Ring B = 1 J =

Proof

Step Hyp Ref Expression
1 zartop.1 S = Spec R
2 zartop.2 J = TopOpen S
3 zar0ring.b B = Base R
4 eqid LIdeal R = LIdeal R
5 eqid PrmIdeal R = PrmIdeal R
6 eqid ran i LIdeal R j PrmIdeal R | ¬ i j = ran i LIdeal R j PrmIdeal R | ¬ i j
7 1 4 5 6 rspectopn R Ring ran i LIdeal R j PrmIdeal R | ¬ i j = TopOpen S
8 7 adantr R Ring B = 1 ran i LIdeal R j PrmIdeal R | ¬ i j = TopOpen S
9 2 8 eqtr4id R Ring B = 1 J = ran i LIdeal R j PrmIdeal R | ¬ i j
10 fvex PrmIdeal R V
11 10 rabex j PrmIdeal R | ¬ i j V
12 eqid i LIdeal R j PrmIdeal R | ¬ i j = i LIdeal R j PrmIdeal R | ¬ i j
13 11 12 fnmpti i LIdeal R j PrmIdeal R | ¬ i j Fn LIdeal R
14 13 a1i R Ring B = 1 i LIdeal R j PrmIdeal R | ¬ i j Fn LIdeal R
15 eqid 0 R = 0 R
16 3 15 0ringidl R Ring B = 1 LIdeal R = 0 R
17 snex 0 R V
18 17 a1i R Ring B = 1 0 R V
19 18 snn0d R Ring B = 1 0 R
20 16 19 eqnetrd R Ring B = 1 LIdeal R
21 3 0ringprmidl R Ring B = 1 PrmIdeal R =
22 21 rabeqdv R Ring B = 1 j PrmIdeal R | ¬ i j = j | ¬ i j
23 rab0 j | ¬ i j =
24 22 23 eqtrdi R Ring B = 1 j PrmIdeal R | ¬ i j =
25 24 mpteq2dv R Ring B = 1 i LIdeal R j PrmIdeal R | ¬ i j = i LIdeal R
26 fconstmpt LIdeal R × = i LIdeal R
27 25 26 eqtr4di R Ring B = 1 i LIdeal R j PrmIdeal R | ¬ i j = LIdeal R ×
28 fconst5 i LIdeal R j PrmIdeal R | ¬ i j Fn LIdeal R LIdeal R i LIdeal R j PrmIdeal R | ¬ i j = LIdeal R × ran i LIdeal R j PrmIdeal R | ¬ i j =
29 28 biimpa i LIdeal R j PrmIdeal R | ¬ i j Fn LIdeal R LIdeal R i LIdeal R j PrmIdeal R | ¬ i j = LIdeal R × ran i LIdeal R j PrmIdeal R | ¬ i j =
30 14 20 27 29 syl21anc R Ring B = 1 ran i LIdeal R j PrmIdeal R | ¬ i j =
31 9 30 eqtrd R Ring B = 1 J =