| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zartop.1 | ⊢ 𝑆  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | zartop.2 | ⊢ 𝐽  =  ( TopOpen ‘ 𝑆 ) | 
						
							| 3 |  | zar0ring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( PrmIdeal ‘ 𝑅 )  =  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 7 | 1 4 5 6 | rspectopn | ⊢ ( 𝑅  ∈  Ring  →  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( TopOpen ‘ 𝑆 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( TopOpen ‘ 𝑆 ) ) | 
						
							| 9 | 2 8 | eqtr4id | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  𝐽  =  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } ) ) | 
						
							| 10 |  | fvex | ⊢ ( PrmIdeal ‘ 𝑅 )  ∈  V | 
						
							| 11 | 10 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  V | 
						
							| 12 |  | eqid | ⊢ ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 13 | 11 12 | fnmpti | ⊢ ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  Fn  ( LIdeal ‘ 𝑅 ) | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  Fn  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 15 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 16 | 3 15 | 0ringidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ( LIdeal ‘ 𝑅 )  =  { { ( 0g ‘ 𝑅 ) } } ) | 
						
							| 17 |  | snex | ⊢ { ( 0g ‘ 𝑅 ) }  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  { ( 0g ‘ 𝑅 ) }  ∈  V ) | 
						
							| 19 | 18 | snn0d | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  { { ( 0g ‘ 𝑅 ) } }  ≠  ∅ ) | 
						
							| 20 | 16 19 | eqnetrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ( LIdeal ‘ 𝑅 )  ≠  ∅ ) | 
						
							| 21 | 3 | 0ringprmidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ( PrmIdeal ‘ 𝑅 )  =  ∅ ) | 
						
							| 22 | 21 | rabeqdv | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ∅  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 23 |  | rab0 | ⊢ { 𝑗  ∈  ∅  ∣  ¬  𝑖  ⊆  𝑗 }  =  ∅ | 
						
							| 24 | 22 23 | eqtrdi | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 }  =  ∅ ) | 
						
							| 25 | 24 | mpteq2dv | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  ∅ ) ) | 
						
							| 26 |  | fconstmpt | ⊢ ( ( LIdeal ‘ 𝑅 )  ×  { ∅ } )  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  ∅ ) | 
						
							| 27 | 25 26 | eqtr4di | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( ( LIdeal ‘ 𝑅 )  ×  { ∅ } ) ) | 
						
							| 28 |  | fconst5 | ⊢ ( ( ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  Fn  ( LIdeal ‘ 𝑅 )  ∧  ( LIdeal ‘ 𝑅 )  ≠  ∅ )  →  ( ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( ( LIdeal ‘ 𝑅 )  ×  { ∅ } )  ↔  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  { ∅ } ) ) | 
						
							| 29 | 28 | biimpa | ⊢ ( ( ( ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  Fn  ( LIdeal ‘ 𝑅 )  ∧  ( LIdeal ‘ 𝑅 )  ≠  ∅ )  ∧  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( ( LIdeal ‘ 𝑅 )  ×  { ∅ } ) )  →  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  { ∅ } ) | 
						
							| 30 | 14 20 27 29 | syl21anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ¬  𝑖  ⊆  𝑗 } )  =  { ∅ } ) | 
						
							| 31 | 9 30 | eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  𝐽  =  { ∅ } ) |