| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zartop.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
| 2 |
|
zartop.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) |
| 3 |
|
zar0ring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
| 7 |
1 4 5 6
|
rspectopn |
⊢ ( 𝑅 ∈ Ring → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( TopOpen ‘ 𝑆 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( TopOpen ‘ 𝑆 ) ) |
| 9 |
2 8
|
eqtr4id |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐽 = ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
| 10 |
|
fvex |
⊢ ( PrmIdeal ‘ 𝑅 ) ∈ V |
| 11 |
10
|
rabex |
⊢ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ V |
| 12 |
|
eqid |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
| 13 |
11 12
|
fnmpti |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) Fn ( LIdeal ‘ 𝑅 ) |
| 14 |
13
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) Fn ( LIdeal ‘ 𝑅 ) ) |
| 15 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 16 |
3 15
|
0ringidl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( LIdeal ‘ 𝑅 ) = { { ( 0g ‘ 𝑅 ) } } ) |
| 17 |
|
snex |
⊢ { ( 0g ‘ 𝑅 ) } ∈ V |
| 18 |
17
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → { ( 0g ‘ 𝑅 ) } ∈ V ) |
| 19 |
18
|
snn0d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → { { ( 0g ‘ 𝑅 ) } } ≠ ∅ ) |
| 20 |
16 19
|
eqnetrd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( LIdeal ‘ 𝑅 ) ≠ ∅ ) |
| 21 |
3
|
0ringprmidl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( PrmIdeal ‘ 𝑅 ) = ∅ ) |
| 22 |
21
|
rabeqdv |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ∅ ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
| 23 |
|
rab0 |
⊢ { 𝑗 ∈ ∅ ∣ ¬ 𝑖 ⊆ 𝑗 } = ∅ |
| 24 |
22 23
|
eqtrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } = ∅ ) |
| 25 |
24
|
mpteq2dv |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ ∅ ) ) |
| 26 |
|
fconstmpt |
⊢ ( ( LIdeal ‘ 𝑅 ) × { ∅ } ) = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ ∅ ) |
| 27 |
25 26
|
eqtr4di |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( ( LIdeal ‘ 𝑅 ) × { ∅ } ) ) |
| 28 |
|
fconst5 |
⊢ ( ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) Fn ( LIdeal ‘ 𝑅 ) ∧ ( LIdeal ‘ 𝑅 ) ≠ ∅ ) → ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( ( LIdeal ‘ 𝑅 ) × { ∅ } ) ↔ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = { ∅ } ) ) |
| 29 |
28
|
biimpa |
⊢ ( ( ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) Fn ( LIdeal ‘ 𝑅 ) ∧ ( LIdeal ‘ 𝑅 ) ≠ ∅ ) ∧ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( ( LIdeal ‘ 𝑅 ) × { ∅ } ) ) → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = { ∅ } ) |
| 30 |
14 20 27 29
|
syl21anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ¬ 𝑖 ⊆ 𝑗 } ) = { ∅ } ) |
| 31 |
9 30
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐽 = { ∅ } ) |