| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zartop.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
| 2 |
|
zartop.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) |
| 3 |
1 2
|
zartop |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ Top ) |
| 4 |
|
sseq2 |
⊢ ( 𝑗 = 𝑥 → ( 𝑥 ⊆ 𝑗 ↔ 𝑥 ⊆ 𝑥 ) ) |
| 5 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 6 |
|
ssidd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ⊆ 𝑥 ) |
| 7 |
4 5 6
|
elrabd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) |
| 9 |
|
sseq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ⊆ 𝑗 ↔ 𝑖 ⊆ 𝑗 ) ) |
| 10 |
9
|
rabbidv |
⊢ ( 𝑘 = 𝑖 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
| 11 |
10
|
cbvmptv |
⊢ ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
| 12 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 15 |
|
prmidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 16 |
13 14 15
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 17 |
|
fvex |
⊢ ( PrmIdeal ‘ 𝑅 ) ∈ V |
| 18 |
17
|
rabex |
⊢ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ∈ V |
| 19 |
18
|
a1i |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ∈ V ) |
| 20 |
|
sseq1 |
⊢ ( 𝑖 = 𝑥 → ( 𝑖 ⊆ 𝑗 ↔ 𝑥 ⊆ 𝑗 ) ) |
| 21 |
20
|
rabbidv |
⊢ ( 𝑖 = 𝑥 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) |
| 22 |
21
|
eqcomd |
⊢ ( 𝑖 = 𝑥 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
| 23 |
22
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝑥 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
| 24 |
11 16 19 23
|
elrnmptdv |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ) |
| 25 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) → 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) |
| 26 |
25
|
eleq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) → ( 𝑥 ∈ 𝑑 ↔ 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) ) |
| 27 |
25
|
eleq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) → ( 𝑦 ∈ 𝑑 ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) ) |
| 28 |
26 27
|
bibi12d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) → ( ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ↔ ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) ) ) |
| 29 |
24 28
|
rspcdv |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) ) ) |
| 30 |
29
|
imp |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) ) |
| 31 |
8 30
|
mpbid |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) |
| 32 |
|
sseq2 |
⊢ ( 𝑗 = 𝑦 → ( 𝑥 ⊆ 𝑗 ↔ 𝑥 ⊆ 𝑦 ) ) |
| 33 |
32
|
elrab |
⊢ ( 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ↔ ( 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑥 ⊆ 𝑦 ) ) |
| 34 |
33
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } → 𝑥 ⊆ 𝑦 ) |
| 35 |
31 34
|
syl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑥 ⊆ 𝑦 ) |
| 36 |
|
sseq2 |
⊢ ( 𝑗 = 𝑦 → ( 𝑦 ⊆ 𝑗 ↔ 𝑦 ⊆ 𝑦 ) ) |
| 37 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 38 |
|
ssidd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ⊆ 𝑦 ) |
| 39 |
36 37 38
|
elrabd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) |
| 40 |
39
|
ad4ant13 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) |
| 41 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 42 |
|
prmidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 43 |
13 41 42
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 44 |
17
|
rabex |
⊢ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ∈ V |
| 45 |
44
|
a1i |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ∈ V ) |
| 46 |
|
sseq1 |
⊢ ( 𝑖 = 𝑦 → ( 𝑖 ⊆ 𝑗 ↔ 𝑦 ⊆ 𝑗 ) ) |
| 47 |
46
|
rabbidv |
⊢ ( 𝑖 = 𝑦 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) |
| 48 |
47
|
eqcomd |
⊢ ( 𝑖 = 𝑦 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
| 49 |
48
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝑦 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
| 50 |
11 43 45 49
|
elrnmptdv |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ) |
| 51 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) → 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) |
| 52 |
51
|
eleq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) → ( 𝑥 ∈ 𝑑 ↔ 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) ) |
| 53 |
51
|
eleq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) → ( 𝑦 ∈ 𝑑 ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) ) |
| 54 |
52 53
|
bibi12d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) → ( ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ↔ ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) ) ) |
| 55 |
50 54
|
rspcdv |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) ) ) |
| 56 |
55
|
imp |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) ) |
| 57 |
40 56
|
mpbird |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) |
| 58 |
|
sseq2 |
⊢ ( 𝑗 = 𝑥 → ( 𝑦 ⊆ 𝑗 ↔ 𝑦 ⊆ 𝑥 ) ) |
| 59 |
58
|
elrab |
⊢ ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ↔ ( 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑦 ⊆ 𝑥 ) ) |
| 60 |
59
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } → 𝑦 ⊆ 𝑥 ) |
| 61 |
57 60
|
syl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑦 ⊆ 𝑥 ) |
| 62 |
35 61
|
eqssd |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑥 = 𝑦 ) |
| 63 |
62
|
ex |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) |
| 64 |
63
|
anasss |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) |
| 65 |
64
|
ralrimivva |
⊢ ( 𝑅 ∈ CRing → ∀ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) |
| 66 |
3 65
|
jca |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) ) |
| 67 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
| 68 |
1 2 67
|
zartopon |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ) |
| 69 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) → ( PrmIdeal ‘ 𝑅 ) = ∪ 𝐽 ) |
| 70 |
68 69
|
syl |
⊢ ( 𝑅 ∈ CRing → ( PrmIdeal ‘ 𝑅 ) = ∪ 𝐽 ) |
| 71 |
1 2 67 11
|
zartopn |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ∧ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) = ( Clsd ‘ 𝐽 ) ) ) |
| 72 |
71
|
simprd |
⊢ ( 𝑅 ∈ CRing → ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) = ( Clsd ‘ 𝐽 ) ) |
| 73 |
70 72
|
ist0cld |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ Kol2 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) ) ) |
| 74 |
66 73
|
mpbird |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ Kol2 ) |