Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
2 |
|
zartop.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) |
3 |
1 2
|
zartop |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ Top ) |
4 |
|
sseq2 |
⊢ ( 𝑗 = 𝑥 → ( 𝑥 ⊆ 𝑗 ↔ 𝑥 ⊆ 𝑥 ) ) |
5 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
6 |
|
ssidd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ⊆ 𝑥 ) |
7 |
4 5 6
|
elrabd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) |
9 |
|
sseq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ⊆ 𝑗 ↔ 𝑖 ⊆ 𝑗 ) ) |
10 |
9
|
rabbidv |
⊢ ( 𝑘 = 𝑖 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
11 |
10
|
cbvmptv |
⊢ ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
12 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
14 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
15 |
|
prmidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( LIdeal ‘ 𝑅 ) ) |
16 |
13 14 15
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( LIdeal ‘ 𝑅 ) ) |
17 |
|
fvex |
⊢ ( PrmIdeal ‘ 𝑅 ) ∈ V |
18 |
17
|
rabex |
⊢ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ∈ V |
19 |
18
|
a1i |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ∈ V ) |
20 |
|
sseq1 |
⊢ ( 𝑖 = 𝑥 → ( 𝑖 ⊆ 𝑗 ↔ 𝑥 ⊆ 𝑗 ) ) |
21 |
20
|
rabbidv |
⊢ ( 𝑖 = 𝑥 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) |
22 |
21
|
eqcomd |
⊢ ( 𝑖 = 𝑥 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
23 |
22
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝑥 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
24 |
11 16 19 23
|
elrnmptdv |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ) |
25 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) → 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) |
26 |
25
|
eleq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) → ( 𝑥 ∈ 𝑑 ↔ 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) ) |
27 |
25
|
eleq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) → ( 𝑦 ∈ 𝑑 ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) ) |
28 |
26 27
|
bibi12d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) → ( ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ↔ ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) ) ) |
29 |
24 28
|
rspcdv |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) ) ) |
30 |
29
|
imp |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) ) |
31 |
8 30
|
mpbid |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ) |
32 |
|
sseq2 |
⊢ ( 𝑗 = 𝑦 → ( 𝑥 ⊆ 𝑗 ↔ 𝑥 ⊆ 𝑦 ) ) |
33 |
32
|
elrab |
⊢ ( 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } ↔ ( 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑥 ⊆ 𝑦 ) ) |
34 |
33
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥 ⊆ 𝑗 } → 𝑥 ⊆ 𝑦 ) |
35 |
31 34
|
syl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑥 ⊆ 𝑦 ) |
36 |
|
sseq2 |
⊢ ( 𝑗 = 𝑦 → ( 𝑦 ⊆ 𝑗 ↔ 𝑦 ⊆ 𝑦 ) ) |
37 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
38 |
|
ssidd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ⊆ 𝑦 ) |
39 |
36 37 38
|
elrabd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) |
40 |
39
|
ad4ant13 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) |
41 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
42 |
|
prmidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( LIdeal ‘ 𝑅 ) ) |
43 |
13 41 42
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( LIdeal ‘ 𝑅 ) ) |
44 |
17
|
rabex |
⊢ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ∈ V |
45 |
44
|
a1i |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ∈ V ) |
46 |
|
sseq1 |
⊢ ( 𝑖 = 𝑦 → ( 𝑖 ⊆ 𝑗 ↔ 𝑦 ⊆ 𝑗 ) ) |
47 |
46
|
rabbidv |
⊢ ( 𝑖 = 𝑦 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) |
48 |
47
|
eqcomd |
⊢ ( 𝑖 = 𝑦 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
49 |
48
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝑦 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
50 |
11 43 45 49
|
elrnmptdv |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ) |
51 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) → 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) |
52 |
51
|
eleq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) → ( 𝑥 ∈ 𝑑 ↔ 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) ) |
53 |
51
|
eleq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) → ( 𝑦 ∈ 𝑑 ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) ) |
54 |
52 53
|
bibi12d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) → ( ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ↔ ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) ) ) |
55 |
50 54
|
rspcdv |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) ) ) |
56 |
55
|
imp |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) ) |
57 |
40 56
|
mpbird |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ) |
58 |
|
sseq2 |
⊢ ( 𝑗 = 𝑥 → ( 𝑦 ⊆ 𝑗 ↔ 𝑦 ⊆ 𝑥 ) ) |
59 |
58
|
elrab |
⊢ ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } ↔ ( 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑦 ⊆ 𝑥 ) ) |
60 |
59
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦 ⊆ 𝑗 } → 𝑦 ⊆ 𝑥 ) |
61 |
57 60
|
syl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑦 ⊆ 𝑥 ) |
62 |
35 61
|
eqssd |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) → 𝑥 = 𝑦 ) |
63 |
62
|
ex |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) |
64 |
63
|
anasss |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) |
65 |
64
|
ralrimivva |
⊢ ( 𝑅 ∈ CRing → ∀ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) |
66 |
3 65
|
jca |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) ) |
67 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
68 |
1 2 67
|
zartopon |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ) |
69 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) → ( PrmIdeal ‘ 𝑅 ) = ∪ 𝐽 ) |
70 |
68 69
|
syl |
⊢ ( 𝑅 ∈ CRing → ( PrmIdeal ‘ 𝑅 ) = ∪ 𝐽 ) |
71 |
1 2 67 11
|
zartopn |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ∧ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) = ( Clsd ‘ 𝐽 ) ) ) |
72 |
71
|
simprd |
⊢ ( 𝑅 ∈ CRing → ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) = ( Clsd ‘ 𝐽 ) ) |
73 |
70 72
|
ist0cld |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ Kol2 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑗 } ) ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) ) ) |
74 |
66 73
|
mpbird |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ Kol2 ) |