Metamath Proof Explorer


Theorem zart0

Description: The Zariski topology is T_0 . Corollary 1.1.8 of EGA p. 81. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1 𝑆 = ( Spec ‘ 𝑅 )
zartop.2 𝐽 = ( TopOpen ‘ 𝑆 )
Assertion zart0 ( 𝑅 ∈ CRing → 𝐽 ∈ Kol2 )

Proof

Step Hyp Ref Expression
1 zartop.1 𝑆 = ( Spec ‘ 𝑅 )
2 zartop.2 𝐽 = ( TopOpen ‘ 𝑆 )
3 1 2 zartop ( 𝑅 ∈ CRing → 𝐽 ∈ Top )
4 sseq2 ( 𝑗 = 𝑥 → ( 𝑥𝑗𝑥𝑥 ) )
5 simpr ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) )
6 ssidd ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥𝑥 )
7 4 5 6 elrabd ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } )
8 7 ad2antrr ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) ) → 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } )
9 sseq1 ( 𝑘 = 𝑖 → ( 𝑘𝑗𝑖𝑗 ) )
10 9 rabbidv ( 𝑘 = 𝑖 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
11 10 cbvmptv ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
12 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
13 12 ad2antrr ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Ring )
14 simplr ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) )
15 prmidlidl ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( LIdeal ‘ 𝑅 ) )
16 13 14 15 syl2anc ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑥 ∈ ( LIdeal ‘ 𝑅 ) )
17 fvex ( PrmIdeal ‘ 𝑅 ) ∈ V
18 17 rabex { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ∈ V
19 18 a1i ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ∈ V )
20 sseq1 ( 𝑖 = 𝑥 → ( 𝑖𝑗𝑥𝑗 ) )
21 20 rabbidv ( 𝑖 = 𝑥 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } )
22 21 eqcomd ( 𝑖 = 𝑥 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
23 22 adantl ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝑥 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
24 11 16 19 23 elrnmptdv ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) )
25 simpr ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ) → 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } )
26 25 eleq2d ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ) → ( 𝑥𝑑𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ) )
27 25 eleq2d ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ) → ( 𝑦𝑑𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ) )
28 26 27 bibi12d ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ) → ( ( 𝑥𝑑𝑦𝑑 ) ↔ ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ) ) )
29 24 28 rspcdv ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ) ) )
30 29 imp ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ) )
31 8 30 mpbid ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) ) → 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } )
32 sseq2 ( 𝑗 = 𝑦 → ( 𝑥𝑗𝑥𝑦 ) )
33 32 elrab ( 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } ↔ ( 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑥𝑦 ) )
34 33 simprbi ( 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑥𝑗 } → 𝑥𝑦 )
35 31 34 syl ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) ) → 𝑥𝑦 )
36 sseq2 ( 𝑗 = 𝑦 → ( 𝑦𝑗𝑦𝑦 ) )
37 simpr ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) )
38 ssidd ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦𝑦 )
39 36 37 38 elrabd ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } )
40 39 ad4ant13 ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) ) → 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } )
41 simpr ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) )
42 prmidlidl ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( LIdeal ‘ 𝑅 ) )
43 13 41 42 syl2anc ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑦 ∈ ( LIdeal ‘ 𝑅 ) )
44 17 rabex { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ∈ V
45 44 a1i ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ∈ V )
46 sseq1 ( 𝑖 = 𝑦 → ( 𝑖𝑗𝑦𝑗 ) )
47 46 rabbidv ( 𝑖 = 𝑦 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } )
48 47 eqcomd ( 𝑖 = 𝑦 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
49 48 adantl ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝑦 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
50 11 43 45 49 elrnmptdv ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) )
51 simpr ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ) → 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } )
52 51 eleq2d ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ) → ( 𝑥𝑑𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ) )
53 51 eleq2d ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ) → ( 𝑦𝑑𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ) )
54 52 53 bibi12d ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑑 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ) → ( ( 𝑥𝑑𝑦𝑑 ) ↔ ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ) ) )
55 50 54 rspcdv ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ) ) )
56 55 imp ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) ) → ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ↔ 𝑦 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ) )
57 40 56 mpbird ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) ) → 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } )
58 sseq2 ( 𝑗 = 𝑥 → ( 𝑦𝑗𝑦𝑥 ) )
59 58 elrab ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } ↔ ( 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑦𝑥 ) )
60 59 simprbi ( 𝑥 ∈ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑦𝑗 } → 𝑦𝑥 )
61 57 60 syl ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) ) → 𝑦𝑥 )
62 35 61 eqssd ( ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) ) → 𝑥 = 𝑦 )
63 62 ex ( ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) → 𝑥 = 𝑦 ) )
64 63 anasss ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ) ) → ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) → 𝑥 = 𝑦 ) )
65 64 ralrimivva ( 𝑅 ∈ CRing → ∀ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) → 𝑥 = 𝑦 ) )
66 3 65 jca ( 𝑅 ∈ CRing → ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) → 𝑥 = 𝑦 ) ) )
67 eqid ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 )
68 1 2 67 zartopon ( 𝑅 ∈ CRing → 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) )
69 toponuni ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) → ( PrmIdeal ‘ 𝑅 ) = 𝐽 )
70 68 69 syl ( 𝑅 ∈ CRing → ( PrmIdeal ‘ 𝑅 ) = 𝐽 )
71 1 2 67 11 zartopn ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ∧ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) = ( Clsd ‘ 𝐽 ) ) )
72 71 simprd ( 𝑅 ∈ CRing → ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) = ( Clsd ‘ 𝐽 ) )
73 70 72 ist0cld ( 𝑅 ∈ CRing → ( 𝐽 ∈ Kol2 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦 ∈ ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑 ∈ ran ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ( 𝑥𝑑𝑦𝑑 ) → 𝑥 = 𝑦 ) ) ) )
74 66 73 mpbird ( 𝑅 ∈ CRing → 𝐽 ∈ Kol2 )