| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zartop.1 | ⊢ 𝑆  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | zartop.2 | ⊢ 𝐽  =  ( TopOpen ‘ 𝑆 ) | 
						
							| 3 | 1 2 | zartop | ⊢ ( 𝑅  ∈  CRing  →  𝐽  ∈  Top ) | 
						
							| 4 |  | sseq2 | ⊢ ( 𝑗  =  𝑥  →  ( 𝑥  ⊆  𝑗  ↔  𝑥  ⊆  𝑥 ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 6 |  | ssidd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑥  ⊆  𝑥 ) | 
						
							| 7 | 4 5 6 | elrabd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 ) )  →  𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } ) | 
						
							| 9 |  | sseq1 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  ⊆  𝑗  ↔  𝑖  ⊆  𝑗 ) ) | 
						
							| 10 | 9 | rabbidv | ⊢ ( 𝑘  =  𝑖  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 11 | 10 | cbvmptv | ⊢ ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 12 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 15 |  | prmidlidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑥  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 16 | 13 14 15 | syl2anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑥  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 17 |  | fvex | ⊢ ( PrmIdeal ‘ 𝑅 )  ∈  V | 
						
							| 18 | 17 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 }  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 }  ∈  V ) | 
						
							| 20 |  | sseq1 | ⊢ ( 𝑖  =  𝑥  →  ( 𝑖  ⊆  𝑗  ↔  𝑥  ⊆  𝑗 ) ) | 
						
							| 21 | 20 | rabbidv | ⊢ ( 𝑖  =  𝑥  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( 𝑖  =  𝑥  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑖  =  𝑥 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 24 | 11 16 19 23 | elrnmptdv | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 }  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑑  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } )  →  𝑑  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } ) | 
						
							| 26 | 25 | eleq2d | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑑  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } )  →  ( 𝑥  ∈  𝑑  ↔  𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } ) ) | 
						
							| 27 | 25 | eleq2d | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑑  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } )  →  ( 𝑦  ∈  𝑑  ↔  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } ) ) | 
						
							| 28 | 26 27 | bibi12d | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑑  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } )  →  ( ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 )  ↔  ( 𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 }  ↔  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } ) ) ) | 
						
							| 29 | 24 28 | rspcdv | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  ( ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 )  →  ( 𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 }  ↔  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } ) ) ) | 
						
							| 30 | 29 | imp | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 ) )  →  ( 𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 }  ↔  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } ) ) | 
						
							| 31 | 8 30 | mpbid | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 ) )  →  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 } ) | 
						
							| 32 |  | sseq2 | ⊢ ( 𝑗  =  𝑦  →  ( 𝑥  ⊆  𝑗  ↔  𝑥  ⊆  𝑦 ) ) | 
						
							| 33 | 32 | elrab | ⊢ ( 𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 }  ↔  ( 𝑦  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑥  ⊆  𝑦 ) ) | 
						
							| 34 | 33 | simprbi | ⊢ ( 𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑥  ⊆  𝑗 }  →  𝑥  ⊆  𝑦 ) | 
						
							| 35 | 31 34 | syl | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 ) )  →  𝑥  ⊆  𝑦 ) | 
						
							| 36 |  | sseq2 | ⊢ ( 𝑗  =  𝑦  →  ( 𝑦  ⊆  𝑗  ↔  𝑦  ⊆  𝑦 ) ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 38 |  | ssidd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑦  ⊆  𝑦 ) | 
						
							| 39 | 36 37 38 | elrabd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } ) | 
						
							| 40 | 39 | ad4ant13 | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 ) )  →  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } ) | 
						
							| 41 |  | simpr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 42 |  | prmidlidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑦  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 43 | 13 41 42 | syl2anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑦  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 44 | 17 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 }  ∈  V | 
						
							| 45 | 44 | a1i | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 }  ∈  V ) | 
						
							| 46 |  | sseq1 | ⊢ ( 𝑖  =  𝑦  →  ( 𝑖  ⊆  𝑗  ↔  𝑦  ⊆  𝑗 ) ) | 
						
							| 47 | 46 | rabbidv | ⊢ ( 𝑖  =  𝑦  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } ) | 
						
							| 48 | 47 | eqcomd | ⊢ ( 𝑖  =  𝑦  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑖  =  𝑦 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 50 | 11 43 45 49 | elrnmptdv | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 }  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ) | 
						
							| 51 |  | simpr | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑑  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } )  →  𝑑  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } ) | 
						
							| 52 | 51 | eleq2d | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑑  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } )  →  ( 𝑥  ∈  𝑑  ↔  𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } ) ) | 
						
							| 53 | 51 | eleq2d | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑑  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } )  →  ( 𝑦  ∈  𝑑  ↔  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } ) ) | 
						
							| 54 | 52 53 | bibi12d | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑑  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } )  →  ( ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 )  ↔  ( 𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 }  ↔  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } ) ) ) | 
						
							| 55 | 50 54 | rspcdv | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  ( ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 )  →  ( 𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 }  ↔  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } ) ) ) | 
						
							| 56 | 55 | imp | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 ) )  →  ( 𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 }  ↔  𝑦  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } ) ) | 
						
							| 57 | 40 56 | mpbird | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 ) )  →  𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 } ) | 
						
							| 58 |  | sseq2 | ⊢ ( 𝑗  =  𝑥  →  ( 𝑦  ⊆  𝑗  ↔  𝑦  ⊆  𝑥 ) ) | 
						
							| 59 | 58 | elrab | ⊢ ( 𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 }  ↔  ( 𝑥  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑦  ⊆  𝑥 ) ) | 
						
							| 60 | 59 | simprbi | ⊢ ( 𝑥  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑦  ⊆  𝑗 }  →  𝑦  ⊆  𝑥 ) | 
						
							| 61 | 57 60 | syl | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 ) )  →  𝑦  ⊆  𝑥 ) | 
						
							| 62 | 35 61 | eqssd | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 ) )  →  𝑥  =  𝑦 ) | 
						
							| 63 | 62 | ex | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  ( ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 )  →  𝑥  =  𝑦 ) ) | 
						
							| 64 | 63 | anasss | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝑥  ∈  ( PrmIdeal ‘ 𝑅 )  ∧  𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) ) )  →  ( ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 )  →  𝑥  =  𝑦 ) ) | 
						
							| 65 | 64 | ralrimivva | ⊢ ( 𝑅  ∈  CRing  →  ∀ 𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 )  →  𝑥  =  𝑦 ) ) | 
						
							| 66 | 3 65 | jca | ⊢ ( 𝑅  ∈  CRing  →  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 67 |  | eqid | ⊢ ( PrmIdeal ‘ 𝑅 )  =  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 68 | 1 2 67 | zartopon | ⊢ ( 𝑅  ∈  CRing  →  𝐽  ∈  ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 69 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) )  →  ( PrmIdeal ‘ 𝑅 )  =  ∪  𝐽 ) | 
						
							| 70 | 68 69 | syl | ⊢ ( 𝑅  ∈  CRing  →  ( PrmIdeal ‘ 𝑅 )  =  ∪  𝐽 ) | 
						
							| 71 | 1 2 67 11 | zartopn | ⊢ ( 𝑅  ∈  CRing  →  ( 𝐽  ∈  ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) )  ∧  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  =  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 72 | 71 | simprd | ⊢ ( 𝑅  ∈  CRing  →  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  =  ( Clsd ‘ 𝐽 ) ) | 
						
							| 73 | 70 72 | ist0cld | ⊢ ( 𝑅  ∈  CRing  →  ( 𝐽  ∈  Kol2  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  ( PrmIdeal ‘ 𝑅 ) ∀ 𝑦  ∈  ( PrmIdeal ‘ 𝑅 ) ( ∀ 𝑑  ∈  ran  ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ( 𝑥  ∈  𝑑  ↔  𝑦  ∈  𝑑 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 74 | 66 73 | mpbird | ⊢ ( 𝑅  ∈  CRing  →  𝐽  ∈  Kol2 ) |