| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ist0cls.1 |
⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
| 2 |
|
ist0cls.2 |
⊢ ( 𝜑 → 𝐷 = ( Clsd ‘ 𝐽 ) ) |
| 3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 4 |
3
|
ist0 |
⊢ ( 𝐽 ∈ Kol2 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 5 |
4
|
simplbi |
⊢ ( 𝐽 ∈ Kol2 → 𝐽 ∈ Top ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ Kol2 ) → 𝐽 ∈ Top ) |
| 7 |
4
|
baib |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ Top ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ Top ) → 𝐵 = ∪ 𝐽 ) |
| 10 |
9
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ Top ) → ∪ 𝐽 = 𝐵 ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ∪ 𝐽 = 𝐵 ) |
| 12 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑜 ∈ 𝐽 ) → 𝐽 ∈ Top ) |
| 13 |
|
uniexg |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) |
| 14 |
|
difexg |
⊢ ( ∪ 𝐽 ∈ V → ( ∪ 𝐽 ∖ 𝑜 ) ∈ V ) |
| 15 |
12 13 14
|
3syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑜 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑜 ) ∈ V ) |
| 16 |
3
|
iscld |
⊢ ( 𝐽 ∈ Top → ( 𝑑 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑑 ⊆ ∪ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ Top ) → ( 𝑑 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑑 ⊆ ∪ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) ) ) |
| 18 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝐷 ↔ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ Top ) → ( 𝑑 ∈ 𝐷 ↔ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 20 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) |
| 21 |
|
difssd |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( ∪ 𝐽 ∖ 𝑜 ) ⊆ ∪ 𝐽 ) |
| 22 |
20 21
|
eqsstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → 𝑑 ⊆ ∪ 𝐽 ) |
| 23 |
22
|
r19.29an |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ ∃ 𝑜 ∈ 𝐽 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → 𝑑 ⊆ ∪ 𝐽 ) |
| 24 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) |
| 25 |
24
|
difeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( ∪ 𝐽 ∖ 𝑑 ) = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑜 ) ) ) |
| 26 |
3
|
eltopss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ ∪ 𝐽 ) |
| 27 |
26
|
ad5ant24 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → 𝑜 ⊆ ∪ 𝐽 ) |
| 28 |
|
dfss4 |
⊢ ( 𝑜 ⊆ ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑜 ) ) = 𝑜 ) |
| 29 |
27 28
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑜 ) ) = 𝑜 ) |
| 30 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → 𝑜 ∈ 𝐽 ) |
| 31 |
29 30
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑜 ) ) ∈ 𝐽 ) |
| 32 |
25 31
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) |
| 33 |
32
|
r19.29an |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ ∃ 𝑜 ∈ 𝐽 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) |
| 34 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) |
| 35 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) ∧ 𝑜 = ( ∪ 𝐽 ∖ 𝑑 ) ) → 𝑜 = ( ∪ 𝐽 ∖ 𝑑 ) ) |
| 36 |
35
|
difeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) ∧ 𝑜 = ( ∪ 𝐽 ∖ 𝑑 ) ) → ( ∪ 𝐽 ∖ 𝑜 ) = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑑 ) ) ) |
| 37 |
36
|
eqeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) ∧ 𝑜 = ( ∪ 𝐽 ∖ 𝑑 ) ) → ( 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ↔ 𝑑 = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑑 ) ) ) ) |
| 38 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) → 𝑑 ⊆ ∪ 𝐽 ) |
| 39 |
|
dfss4 |
⊢ ( 𝑑 ⊆ ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑑 ) ) = 𝑑 ) |
| 40 |
38 39
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑑 ) ) = 𝑑 ) |
| 41 |
40
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) → 𝑑 = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑑 ) ) ) |
| 42 |
34 37 41
|
rspcedvd |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) → ∃ 𝑜 ∈ 𝐽 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) |
| 43 |
33 42
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑑 ⊆ ∪ 𝐽 ) → ( ∃ 𝑜 ∈ 𝐽 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ↔ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) ) |
| 44 |
23 43
|
biadanid |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ Top ) → ( ∃ 𝑜 ∈ 𝐽 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ↔ ( 𝑑 ⊆ ∪ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝑑 ) ∈ 𝐽 ) ) ) |
| 45 |
17 19 44
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ Top ) → ( 𝑑 ∈ 𝐷 ↔ ∃ 𝑜 ∈ 𝐽 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) → ( 𝑑 ∈ 𝐷 ↔ ∃ 𝑜 ∈ 𝐽 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) ) |
| 47 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) |
| 48 |
47
|
eleq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( 𝑥 ∈ 𝑑 ↔ 𝑥 ∈ ( ∪ 𝐽 ∖ 𝑜 ) ) ) |
| 49 |
|
eldif |
⊢ ( 𝑥 ∈ ( ∪ 𝐽 ∖ 𝑜 ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ¬ 𝑥 ∈ 𝑜 ) ) |
| 50 |
49
|
baib |
⊢ ( 𝑥 ∈ ∪ 𝐽 → ( 𝑥 ∈ ( ∪ 𝐽 ∖ 𝑜 ) ↔ ¬ 𝑥 ∈ 𝑜 ) ) |
| 51 |
50
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( 𝑥 ∈ ( ∪ 𝐽 ∖ 𝑜 ) ↔ ¬ 𝑥 ∈ 𝑜 ) ) |
| 52 |
48 51
|
bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( 𝑥 ∈ 𝑑 ↔ ¬ 𝑥 ∈ 𝑜 ) ) |
| 53 |
47
|
eleq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( 𝑦 ∈ 𝑑 ↔ 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑜 ) ) ) |
| 54 |
|
eldif |
⊢ ( 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑜 ) ↔ ( 𝑦 ∈ ∪ 𝐽 ∧ ¬ 𝑦 ∈ 𝑜 ) ) |
| 55 |
54
|
baib |
⊢ ( 𝑦 ∈ ∪ 𝐽 → ( 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑜 ) ↔ ¬ 𝑦 ∈ 𝑜 ) ) |
| 56 |
55
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑜 ) ↔ ¬ 𝑦 ∈ 𝑜 ) ) |
| 57 |
53 56
|
bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( 𝑦 ∈ 𝑑 ↔ ¬ 𝑦 ∈ 𝑜 ) ) |
| 58 |
52 57
|
bibi12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ↔ ( ¬ 𝑥 ∈ 𝑜 ↔ ¬ 𝑦 ∈ 𝑜 ) ) ) |
| 59 |
|
notbi |
⊢ ( ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ( ¬ 𝑥 ∈ 𝑜 ↔ ¬ 𝑦 ∈ 𝑜 ) ) |
| 60 |
58 59
|
bitr4di |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) ∧ 𝑑 = ( ∪ 𝐽 ∖ 𝑜 ) ) → ( ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ↔ ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
| 61 |
15 46 60
|
ralxfr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) → ( ∀ 𝑑 ∈ 𝐷 ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
| 62 |
61
|
bicomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑑 ∈ 𝐷 ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) ) ) |
| 63 |
62
|
imbi1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) ∧ 𝑦 ∈ ∪ 𝐽 ) → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑑 ∈ 𝐷 ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) ) |
| 64 |
11 63
|
raleqbidva |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ Top ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑑 ∈ 𝐷 ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) ) |
| 65 |
10 64
|
raleqbidva |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ Top ) → ( ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑑 ∈ 𝐷 ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) ) |
| 66 |
8 65
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ Top ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑑 ∈ 𝐷 ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) ) |
| 67 |
6 66
|
biadanid |
⊢ ( 𝜑 → ( 𝐽 ∈ Kol2 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑑 ∈ 𝐷 ( 𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑 ) → 𝑥 = 𝑦 ) ) ) ) |