Metamath Proof Explorer


Theorem ist0

Description: The predicate "is a T_0 space". Every pair of distinct points is topologically distinguishable. For the way this definition is usually encountered, see ist0-3 . (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis ist0.1 𝑋 = 𝐽
Assertion ist0 ( 𝐽 ∈ Kol2 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝑋𝑦𝑋 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 ist0.1 𝑋 = 𝐽
2 unieq ( 𝑗 = 𝐽 𝑗 = 𝐽 )
3 2 1 eqtr4di ( 𝑗 = 𝐽 𝑗 = 𝑋 )
4 raleq ( 𝑗 = 𝐽 → ( ∀ 𝑜𝑗 ( 𝑥𝑜𝑦𝑜 ) ↔ ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) ) )
5 4 imbi1d ( 𝑗 = 𝐽 → ( ( ∀ 𝑜𝑗 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )
6 3 5 raleqbidv ( 𝑗 = 𝐽 → ( ∀ 𝑦 𝑗 ( ∀ 𝑜𝑗 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦𝑋 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )
7 3 6 raleqbidv ( 𝑗 = 𝐽 → ( ∀ 𝑥 𝑗𝑦 𝑗 ( ∀ 𝑜𝑗 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥𝑋𝑦𝑋 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )
8 df-t0 Kol2 = { 𝑗 ∈ Top ∣ ∀ 𝑥 𝑗𝑦 𝑗 ( ∀ 𝑜𝑗 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) }
9 7 8 elrab2 ( 𝐽 ∈ Kol2 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝑋𝑦𝑋 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )