Step |
Hyp |
Ref |
Expression |
1 |
|
ist0cls.1 |
|
2 |
|
ist0cls.2 |
|
3 |
|
eqid |
|
4 |
3
|
ist0 |
|
5 |
4
|
simplbi |
|
6 |
5
|
adantl |
|
7 |
4
|
baib |
|
8 |
7
|
adantl |
|
9 |
1
|
adantr |
|
10 |
9
|
eqcomd |
|
11 |
10
|
adantr |
|
12 |
|
simp-4r |
|
13 |
|
uniexg |
|
14 |
|
difexg |
|
15 |
12 13 14
|
3syl |
|
16 |
3
|
iscld |
|
17 |
16
|
adantl |
|
18 |
2
|
eleq2d |
|
19 |
18
|
adantr |
|
20 |
|
simpr |
|
21 |
|
difssd |
|
22 |
20 21
|
eqsstrd |
|
23 |
22
|
r19.29an |
|
24 |
|
simpr |
|
25 |
24
|
difeq2d |
|
26 |
3
|
eltopss |
|
27 |
26
|
ad5ant24 |
|
28 |
|
dfss4 |
|
29 |
27 28
|
sylib |
|
30 |
|
simplr |
|
31 |
29 30
|
eqeltrd |
|
32 |
25 31
|
eqeltrd |
|
33 |
32
|
r19.29an |
|
34 |
|
simpr |
|
35 |
|
simpr |
|
36 |
35
|
difeq2d |
|
37 |
36
|
eqeq2d |
|
38 |
|
simplr |
|
39 |
|
dfss4 |
|
40 |
38 39
|
sylib |
|
41 |
40
|
eqcomd |
|
42 |
34 37 41
|
rspcedvd |
|
43 |
33 42
|
impbida |
|
44 |
23 43
|
biadanid |
|
45 |
17 19 44
|
3bitr4d |
|
46 |
45
|
ad2antrr |
|
47 |
|
simpr |
|
48 |
47
|
eleq2d |
|
49 |
|
eldif |
|
50 |
49
|
baib |
|
51 |
50
|
ad3antlr |
|
52 |
48 51
|
bitrd |
|
53 |
47
|
eleq2d |
|
54 |
|
eldif |
|
55 |
54
|
baib |
|
56 |
55
|
ad2antlr |
|
57 |
53 56
|
bitrd |
|
58 |
52 57
|
bibi12d |
|
59 |
|
notbi |
|
60 |
58 59
|
bitr4di |
|
61 |
15 46 60
|
ralxfr2d |
|
62 |
61
|
bicomd |
|
63 |
62
|
imbi1d |
|
64 |
11 63
|
raleqbidva |
|
65 |
10 64
|
raleqbidva |
|
66 |
8 65
|
bitrd |
|
67 |
6 66
|
biadanid |
|