Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
|
2 |
|
zartop.2 |
|
3 |
1 2
|
zartop |
|
4 |
|
sseq2 |
|
5 |
|
simpr |
|
6 |
|
ssidd |
|
7 |
4 5 6
|
elrabd |
|
8 |
7
|
ad2antrr |
|
9 |
|
sseq1 |
|
10 |
9
|
rabbidv |
|
11 |
10
|
cbvmptv |
|
12 |
|
crngring |
|
13 |
12
|
ad2antrr |
|
14 |
|
simplr |
|
15 |
|
prmidlidl |
|
16 |
13 14 15
|
syl2anc |
|
17 |
|
fvex |
|
18 |
17
|
rabex |
|
19 |
18
|
a1i |
|
20 |
|
sseq1 |
|
21 |
20
|
rabbidv |
|
22 |
21
|
eqcomd |
|
23 |
22
|
adantl |
|
24 |
11 16 19 23
|
elrnmptdv |
|
25 |
|
simpr |
|
26 |
25
|
eleq2d |
|
27 |
25
|
eleq2d |
|
28 |
26 27
|
bibi12d |
|
29 |
24 28
|
rspcdv |
|
30 |
29
|
imp |
|
31 |
8 30
|
mpbid |
|
32 |
|
sseq2 |
|
33 |
32
|
elrab |
|
34 |
33
|
simprbi |
|
35 |
31 34
|
syl |
|
36 |
|
sseq2 |
|
37 |
|
simpr |
|
38 |
|
ssidd |
|
39 |
36 37 38
|
elrabd |
|
40 |
39
|
ad4ant13 |
|
41 |
|
simpr |
|
42 |
|
prmidlidl |
|
43 |
13 41 42
|
syl2anc |
|
44 |
17
|
rabex |
|
45 |
44
|
a1i |
|
46 |
|
sseq1 |
|
47 |
46
|
rabbidv |
|
48 |
47
|
eqcomd |
|
49 |
48
|
adantl |
|
50 |
11 43 45 49
|
elrnmptdv |
|
51 |
|
simpr |
|
52 |
51
|
eleq2d |
|
53 |
51
|
eleq2d |
|
54 |
52 53
|
bibi12d |
|
55 |
50 54
|
rspcdv |
|
56 |
55
|
imp |
|
57 |
40 56
|
mpbird |
|
58 |
|
sseq2 |
|
59 |
58
|
elrab |
|
60 |
59
|
simprbi |
|
61 |
57 60
|
syl |
|
62 |
35 61
|
eqssd |
|
63 |
62
|
ex |
|
64 |
63
|
anasss |
|
65 |
64
|
ralrimivva |
|
66 |
3 65
|
jca |
|
67 |
|
eqid |
|
68 |
1 2 67
|
zartopon |
|
69 |
|
toponuni |
|
70 |
68 69
|
syl |
|
71 |
1 2 67 11
|
zartopn |
|
72 |
71
|
simprd |
|
73 |
70 72
|
ist0cld |
|
74 |
66 73
|
mpbird |
|