| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zartop.1 |
|
| 2 |
|
zartop.2 |
|
| 3 |
1 2
|
zartop |
|
| 4 |
|
sseq2 |
|
| 5 |
|
simpr |
|
| 6 |
|
ssidd |
|
| 7 |
4 5 6
|
elrabd |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
|
sseq1 |
|
| 10 |
9
|
rabbidv |
|
| 11 |
10
|
cbvmptv |
|
| 12 |
|
crngring |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
|
simplr |
|
| 15 |
|
prmidlidl |
|
| 16 |
13 14 15
|
syl2anc |
|
| 17 |
|
fvex |
|
| 18 |
17
|
rabex |
|
| 19 |
18
|
a1i |
|
| 20 |
|
sseq1 |
|
| 21 |
20
|
rabbidv |
|
| 22 |
21
|
eqcomd |
|
| 23 |
22
|
adantl |
|
| 24 |
11 16 19 23
|
elrnmptdv |
|
| 25 |
|
simpr |
|
| 26 |
25
|
eleq2d |
|
| 27 |
25
|
eleq2d |
|
| 28 |
26 27
|
bibi12d |
|
| 29 |
24 28
|
rspcdv |
|
| 30 |
29
|
imp |
|
| 31 |
8 30
|
mpbid |
|
| 32 |
|
sseq2 |
|
| 33 |
32
|
elrab |
|
| 34 |
33
|
simprbi |
|
| 35 |
31 34
|
syl |
|
| 36 |
|
sseq2 |
|
| 37 |
|
simpr |
|
| 38 |
|
ssidd |
|
| 39 |
36 37 38
|
elrabd |
|
| 40 |
39
|
ad4ant13 |
|
| 41 |
|
simpr |
|
| 42 |
|
prmidlidl |
|
| 43 |
13 41 42
|
syl2anc |
|
| 44 |
17
|
rabex |
|
| 45 |
44
|
a1i |
|
| 46 |
|
sseq1 |
|
| 47 |
46
|
rabbidv |
|
| 48 |
47
|
eqcomd |
|
| 49 |
48
|
adantl |
|
| 50 |
11 43 45 49
|
elrnmptdv |
|
| 51 |
|
simpr |
|
| 52 |
51
|
eleq2d |
|
| 53 |
51
|
eleq2d |
|
| 54 |
52 53
|
bibi12d |
|
| 55 |
50 54
|
rspcdv |
|
| 56 |
55
|
imp |
|
| 57 |
40 56
|
mpbird |
|
| 58 |
|
sseq2 |
|
| 59 |
58
|
elrab |
|
| 60 |
59
|
simprbi |
|
| 61 |
57 60
|
syl |
|
| 62 |
35 61
|
eqssd |
|
| 63 |
62
|
ex |
|
| 64 |
63
|
anasss |
|
| 65 |
64
|
ralrimivva |
|
| 66 |
3 65
|
jca |
|
| 67 |
|
eqid |
|
| 68 |
1 2 67
|
zartopon |
|
| 69 |
|
toponuni |
|
| 70 |
68 69
|
syl |
|
| 71 |
1 2 67 11
|
zartopn |
|
| 72 |
71
|
simprd |
|
| 73 |
70 72
|
ist0cld |
|
| 74 |
66 73
|
mpbird |
|