Metamath Proof Explorer


Theorem zart0

Description: The Zariski topology is T_0 . Corollary 1.1.8 of EGA p. 81. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1 S = Spec R
zartop.2 J = TopOpen S
Assertion zart0 R CRing J Kol2

Proof

Step Hyp Ref Expression
1 zartop.1 S = Spec R
2 zartop.2 J = TopOpen S
3 1 2 zartop R CRing J Top
4 sseq2 j = x x j x x
5 simpr R CRing x PrmIdeal R x PrmIdeal R
6 ssidd R CRing x PrmIdeal R x x
7 4 5 6 elrabd R CRing x PrmIdeal R x j PrmIdeal R | x j
8 7 ad2antrr R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x j PrmIdeal R | x j
9 sseq1 k = i k j i j
10 9 rabbidv k = i j PrmIdeal R | k j = j PrmIdeal R | i j
11 10 cbvmptv k LIdeal R j PrmIdeal R | k j = i LIdeal R j PrmIdeal R | i j
12 crngring R CRing R Ring
13 12 ad2antrr R CRing x PrmIdeal R y PrmIdeal R R Ring
14 simplr R CRing x PrmIdeal R y PrmIdeal R x PrmIdeal R
15 prmidlidl R Ring x PrmIdeal R x LIdeal R
16 13 14 15 syl2anc R CRing x PrmIdeal R y PrmIdeal R x LIdeal R
17 fvex PrmIdeal R V
18 17 rabex j PrmIdeal R | x j V
19 18 a1i R CRing x PrmIdeal R y PrmIdeal R j PrmIdeal R | x j V
20 sseq1 i = x i j x j
21 20 rabbidv i = x j PrmIdeal R | i j = j PrmIdeal R | x j
22 21 eqcomd i = x j PrmIdeal R | x j = j PrmIdeal R | i j
23 22 adantl R CRing x PrmIdeal R y PrmIdeal R i = x j PrmIdeal R | x j = j PrmIdeal R | i j
24 11 16 19 23 elrnmptdv R CRing x PrmIdeal R y PrmIdeal R j PrmIdeal R | x j ran k LIdeal R j PrmIdeal R | k j
25 simpr R CRing x PrmIdeal R y PrmIdeal R d = j PrmIdeal R | x j d = j PrmIdeal R | x j
26 25 eleq2d R CRing x PrmIdeal R y PrmIdeal R d = j PrmIdeal R | x j x d x j PrmIdeal R | x j
27 25 eleq2d R CRing x PrmIdeal R y PrmIdeal R d = j PrmIdeal R | x j y d y j PrmIdeal R | x j
28 26 27 bibi12d R CRing x PrmIdeal R y PrmIdeal R d = j PrmIdeal R | x j x d y d x j PrmIdeal R | x j y j PrmIdeal R | x j
29 24 28 rspcdv R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x j PrmIdeal R | x j y j PrmIdeal R | x j
30 29 imp R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x j PrmIdeal R | x j y j PrmIdeal R | x j
31 8 30 mpbid R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d y j PrmIdeal R | x j
32 sseq2 j = y x j x y
33 32 elrab y j PrmIdeal R | x j y PrmIdeal R x y
34 33 simprbi y j PrmIdeal R | x j x y
35 31 34 syl R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x y
36 sseq2 j = y y j y y
37 simpr R CRing y PrmIdeal R y PrmIdeal R
38 ssidd R CRing y PrmIdeal R y y
39 36 37 38 elrabd R CRing y PrmIdeal R y j PrmIdeal R | y j
40 39 ad4ant13 R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d y j PrmIdeal R | y j
41 simpr R CRing x PrmIdeal R y PrmIdeal R y PrmIdeal R
42 prmidlidl R Ring y PrmIdeal R y LIdeal R
43 13 41 42 syl2anc R CRing x PrmIdeal R y PrmIdeal R y LIdeal R
44 17 rabex j PrmIdeal R | y j V
45 44 a1i R CRing x PrmIdeal R y PrmIdeal R j PrmIdeal R | y j V
46 sseq1 i = y i j y j
47 46 rabbidv i = y j PrmIdeal R | i j = j PrmIdeal R | y j
48 47 eqcomd i = y j PrmIdeal R | y j = j PrmIdeal R | i j
49 48 adantl R CRing x PrmIdeal R y PrmIdeal R i = y j PrmIdeal R | y j = j PrmIdeal R | i j
50 11 43 45 49 elrnmptdv R CRing x PrmIdeal R y PrmIdeal R j PrmIdeal R | y j ran k LIdeal R j PrmIdeal R | k j
51 simpr R CRing x PrmIdeal R y PrmIdeal R d = j PrmIdeal R | y j d = j PrmIdeal R | y j
52 51 eleq2d R CRing x PrmIdeal R y PrmIdeal R d = j PrmIdeal R | y j x d x j PrmIdeal R | y j
53 51 eleq2d R CRing x PrmIdeal R y PrmIdeal R d = j PrmIdeal R | y j y d y j PrmIdeal R | y j
54 52 53 bibi12d R CRing x PrmIdeal R y PrmIdeal R d = j PrmIdeal R | y j x d y d x j PrmIdeal R | y j y j PrmIdeal R | y j
55 50 54 rspcdv R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x j PrmIdeal R | y j y j PrmIdeal R | y j
56 55 imp R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x j PrmIdeal R | y j y j PrmIdeal R | y j
57 40 56 mpbird R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x j PrmIdeal R | y j
58 sseq2 j = x y j y x
59 58 elrab x j PrmIdeal R | y j x PrmIdeal R y x
60 59 simprbi x j PrmIdeal R | y j y x
61 57 60 syl R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d y x
62 35 61 eqssd R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x = y
63 62 ex R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x = y
64 63 anasss R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x = y
65 64 ralrimivva R CRing x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x = y
66 3 65 jca R CRing J Top x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x = y
67 eqid PrmIdeal R = PrmIdeal R
68 1 2 67 zartopon R CRing J TopOn PrmIdeal R
69 toponuni J TopOn PrmIdeal R PrmIdeal R = J
70 68 69 syl R CRing PrmIdeal R = J
71 1 2 67 11 zartopn R CRing J TopOn PrmIdeal R ran k LIdeal R j PrmIdeal R | k j = Clsd J
72 71 simprd R CRing ran k LIdeal R j PrmIdeal R | k j = Clsd J
73 70 72 ist0cld R CRing J Kol2 J Top x PrmIdeal R y PrmIdeal R d ran k LIdeal R j PrmIdeal R | k j x d y d x = y
74 66 73 mpbird R CRing J Kol2