Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
|
2 |
|
zartop.2 |
|
3 |
|
zarmxt1.1 |
|
4 |
|
zarmxt1.2 |
|
5 |
1 2
|
zartop |
|
6 |
3
|
fvexi |
|
7 |
|
resttop |
|
8 |
4 7
|
eqeltrid |
|
9 |
5 6 8
|
sylancl |
|
10 |
|
eqid |
|
11 |
10
|
mxidlprm |
|
12 |
11
|
ex |
|
13 |
12
|
ssrdv |
|
14 |
13
|
adantr |
|
15 |
|
eqid |
|
16 |
14 3 15
|
3sstr4g |
|
17 |
|
sseq2 |
|
18 |
17
|
cbvrabv |
|
19 |
|
sseq1 |
|
20 |
19
|
rabbidv |
|
21 |
18 20
|
eqtrid |
|
22 |
21
|
cbvmptv |
|
23 |
1 2 15 22
|
zartopn |
|
24 |
23
|
adantr |
|
25 |
24
|
simpld |
|
26 |
|
toponuni |
|
27 |
25 26
|
syl |
|
28 |
16 27
|
sseqtrd |
|
29 |
|
simpl |
|
30 |
29
|
crngringd |
|
31 |
|
simpr |
|
32 |
4
|
unieqi |
|
33 |
31 32
|
eleqtrdi |
|
34 |
5
|
adantr |
|
35 |
|
eqid |
|
36 |
35
|
restuni |
|
37 |
34 28 36
|
syl2anc |
|
38 |
33 37
|
eleqtrrd |
|
39 |
38 3
|
eleqtrdi |
|
40 |
|
eqid |
|
41 |
40
|
mxidlidl |
|
42 |
30 39 41
|
syl2anc |
|
43 |
|
eqid |
|
44 |
22 43
|
zarclssn |
|
45 |
44
|
biimpar |
|
46 |
29 42 39 45
|
syl21anc |
|
47 |
22
|
funmpt2 |
|
48 |
|
fvex |
|
49 |
48
|
rabex |
|
50 |
49 22
|
dmmpti |
|
51 |
42 50
|
eleqtrrdi |
|
52 |
|
fvelrn |
|
53 |
47 51 52
|
sylancr |
|
54 |
46 53
|
eqeltrd |
|
55 |
24
|
simprd |
|
56 |
54 55
|
eleqtrd |
|
57 |
38
|
snssd |
|
58 |
35
|
restcldi |
|
59 |
28 56 57 58
|
syl3anc |
|
60 |
4
|
fveq2i |
|
61 |
59 60
|
eleqtrrdi |
|
62 |
61
|
ralrimiva |
|
63 |
|
eqid |
|
64 |
63
|
ist1 |
|
65 |
9 62 64
|
sylanbrc |
|