Metamath Proof Explorer


Theorem zarmxt1

Description: The Zariski topology restricted to maximal ideals is T_1 . (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1 S = Spec R
zartop.2 J = TopOpen S
zarmxt1.1 M = MaxIdeal R
zarmxt1.2 T = J 𝑡 M
Assertion zarmxt1 R CRing T Fre

Proof

Step Hyp Ref Expression
1 zartop.1 S = Spec R
2 zartop.2 J = TopOpen S
3 zarmxt1.1 M = MaxIdeal R
4 zarmxt1.2 T = J 𝑡 M
5 1 2 zartop R CRing J Top
6 3 fvexi M V
7 resttop J Top M V J 𝑡 M Top
8 4 7 eqeltrid J Top M V T Top
9 5 6 8 sylancl R CRing T Top
10 eqid LSSum mulGrp R = LSSum mulGrp R
11 10 mxidlprm R CRing m MaxIdeal R m PrmIdeal R
12 11 ex R CRing m MaxIdeal R m PrmIdeal R
13 12 ssrdv R CRing MaxIdeal R PrmIdeal R
14 13 adantr R CRing m T MaxIdeal R PrmIdeal R
15 eqid PrmIdeal R = PrmIdeal R
16 14 3 15 3sstr4g R CRing m T M PrmIdeal R
17 sseq2 j = l i j i l
18 17 cbvrabv j PrmIdeal R | i j = l PrmIdeal R | i l
19 sseq1 i = k i l k l
20 19 rabbidv i = k l PrmIdeal R | i l = l PrmIdeal R | k l
21 18 20 eqtrid i = k j PrmIdeal R | i j = l PrmIdeal R | k l
22 21 cbvmptv i LIdeal R j PrmIdeal R | i j = k LIdeal R l PrmIdeal R | k l
23 1 2 15 22 zartopn R CRing J TopOn PrmIdeal R ran i LIdeal R j PrmIdeal R | i j = Clsd J
24 23 adantr R CRing m T J TopOn PrmIdeal R ran i LIdeal R j PrmIdeal R | i j = Clsd J
25 24 simpld R CRing m T J TopOn PrmIdeal R
26 toponuni J TopOn PrmIdeal R PrmIdeal R = J
27 25 26 syl R CRing m T PrmIdeal R = J
28 16 27 sseqtrd R CRing m T M J
29 simpl R CRing m T R CRing
30 29 crngringd R CRing m T R Ring
31 simpr R CRing m T m T
32 4 unieqi T = J 𝑡 M
33 31 32 eleqtrdi R CRing m T m J 𝑡 M
34 5 adantr R CRing m T J Top
35 eqid J = J
36 35 restuni J Top M J M = J 𝑡 M
37 34 28 36 syl2anc R CRing m T M = J 𝑡 M
38 33 37 eleqtrrd R CRing m T m M
39 38 3 eleqtrdi R CRing m T m MaxIdeal R
40 eqid Base R = Base R
41 40 mxidlidl R Ring m MaxIdeal R m LIdeal R
42 30 39 41 syl2anc R CRing m T m LIdeal R
43 eqid LIdeal R = LIdeal R
44 22 43 zarclssn R CRing m LIdeal R m = i LIdeal R j PrmIdeal R | i j m m MaxIdeal R
45 44 biimpar R CRing m LIdeal R m MaxIdeal R m = i LIdeal R j PrmIdeal R | i j m
46 29 42 39 45 syl21anc R CRing m T m = i LIdeal R j PrmIdeal R | i j m
47 22 funmpt2 Fun i LIdeal R j PrmIdeal R | i j
48 fvex PrmIdeal R V
49 48 rabex l PrmIdeal R | k l V
50 49 22 dmmpti dom i LIdeal R j PrmIdeal R | i j = LIdeal R
51 42 50 eleqtrrdi R CRing m T m dom i LIdeal R j PrmIdeal R | i j
52 fvelrn Fun i LIdeal R j PrmIdeal R | i j m dom i LIdeal R j PrmIdeal R | i j i LIdeal R j PrmIdeal R | i j m ran i LIdeal R j PrmIdeal R | i j
53 47 51 52 sylancr R CRing m T i LIdeal R j PrmIdeal R | i j m ran i LIdeal R j PrmIdeal R | i j
54 46 53 eqeltrd R CRing m T m ran i LIdeal R j PrmIdeal R | i j
55 24 simprd R CRing m T ran i LIdeal R j PrmIdeal R | i j = Clsd J
56 54 55 eleqtrd R CRing m T m Clsd J
57 38 snssd R CRing m T m M
58 35 restcldi M J m Clsd J m M m Clsd J 𝑡 M
59 28 56 57 58 syl3anc R CRing m T m Clsd J 𝑡 M
60 4 fveq2i Clsd T = Clsd J 𝑡 M
61 59 60 eleqtrrdi R CRing m T m Clsd T
62 61 ralrimiva R CRing m T m Clsd T
63 eqid T = T
64 63 ist1 T Fre T Top m T m Clsd T
65 9 62 64 sylanbrc R CRing T Fre