Metamath Proof Explorer


Theorem zarmxt1

Description: The Zariski topology restricted to maximal ideals is T_1 . (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1 𝑆 = ( Spec ‘ 𝑅 )
zartop.2 𝐽 = ( TopOpen ‘ 𝑆 )
zarmxt1.1 𝑀 = ( MaxIdeal ‘ 𝑅 )
zarmxt1.2 𝑇 = ( 𝐽t 𝑀 )
Assertion zarmxt1 ( 𝑅 ∈ CRing → 𝑇 ∈ Fre )

Proof

Step Hyp Ref Expression
1 zartop.1 𝑆 = ( Spec ‘ 𝑅 )
2 zartop.2 𝐽 = ( TopOpen ‘ 𝑆 )
3 zarmxt1.1 𝑀 = ( MaxIdeal ‘ 𝑅 )
4 zarmxt1.2 𝑇 = ( 𝐽t 𝑀 )
5 1 2 zartop ( 𝑅 ∈ CRing → 𝐽 ∈ Top )
6 3 fvexi 𝑀 ∈ V
7 resttop ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ V ) → ( 𝐽t 𝑀 ) ∈ Top )
8 4 7 eqeltrid ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ V ) → 𝑇 ∈ Top )
9 5 6 8 sylancl ( 𝑅 ∈ CRing → 𝑇 ∈ Top )
10 eqid ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )
11 10 mxidlprm ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) )
12 11 ex ( 𝑅 ∈ CRing → ( 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) → 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ) )
13 12 ssrdv ( 𝑅 ∈ CRing → ( MaxIdeal ‘ 𝑅 ) ⊆ ( PrmIdeal ‘ 𝑅 ) )
14 13 adantr ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → ( MaxIdeal ‘ 𝑅 ) ⊆ ( PrmIdeal ‘ 𝑅 ) )
15 eqid ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 )
16 14 3 15 3sstr4g ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑀 ⊆ ( PrmIdeal ‘ 𝑅 ) )
17 sseq2 ( 𝑗 = 𝑙 → ( 𝑖𝑗𝑖𝑙 ) )
18 17 cbvrabv { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑙 }
19 sseq1 ( 𝑖 = 𝑘 → ( 𝑖𝑙𝑘𝑙 ) )
20 19 rabbidv ( 𝑖 = 𝑘 → { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑙 } = { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑙 } )
21 18 20 syl5eq ( 𝑖 = 𝑘 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑙 } )
22 21 cbvmptv ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) = ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑙 } )
23 1 2 15 22 zartopn ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ∧ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) = ( Clsd ‘ 𝐽 ) ) )
24 23 adantr ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ∧ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) = ( Clsd ‘ 𝐽 ) ) )
25 24 simpld ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) )
26 toponuni ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) → ( PrmIdeal ‘ 𝑅 ) = 𝐽 )
27 25 26 syl ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → ( PrmIdeal ‘ 𝑅 ) = 𝐽 )
28 16 27 sseqtrd ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑀 𝐽 )
29 simpl ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑅 ∈ CRing )
30 29 crngringd ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑅 ∈ Ring )
31 simpr ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑚 𝑇 )
32 4 unieqi 𝑇 = ( 𝐽t 𝑀 )
33 31 32 eleqtrdi ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑚 ( 𝐽t 𝑀 ) )
34 5 adantr ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝐽 ∈ Top )
35 eqid 𝐽 = 𝐽
36 35 restuni ( ( 𝐽 ∈ Top ∧ 𝑀 𝐽 ) → 𝑀 = ( 𝐽t 𝑀 ) )
37 34 28 36 syl2anc ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑀 = ( 𝐽t 𝑀 ) )
38 33 37 eleqtrrd ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑚𝑀 )
39 38 3 eleqtrdi ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) )
40 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
41 40 mxidlidl ( ( 𝑅 ∈ Ring ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑚 ∈ ( LIdeal ‘ 𝑅 ) )
42 30 39 41 syl2anc ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑚 ∈ ( LIdeal ‘ 𝑅 ) )
43 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
44 22 43 zarclssn ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ( LIdeal ‘ 𝑅 ) ) → ( { 𝑚 } = ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) ‘ 𝑚 ) ↔ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) )
45 44 biimpar ( ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → { 𝑚 } = ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) ‘ 𝑚 ) )
46 29 42 39 45 syl21anc ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → { 𝑚 } = ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) ‘ 𝑚 ) )
47 22 funmpt2 Fun ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
48 fvex ( PrmIdeal ‘ 𝑅 ) ∈ V
49 48 rabex { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑙 } ∈ V
50 49 22 dmmpti dom ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) = ( LIdeal ‘ 𝑅 )
51 42 50 eleqtrrdi ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → 𝑚 ∈ dom ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
52 fvelrn ( ( Fun ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) ∧ 𝑚 ∈ dom ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) ) → ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) ‘ 𝑚 ) ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
53 47 51 52 sylancr ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) ‘ 𝑚 ) ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
54 46 53 eqeltrd ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → { 𝑚 } ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) )
55 24 simprd ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ) = ( Clsd ‘ 𝐽 ) )
56 54 55 eleqtrd ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → { 𝑚 } ∈ ( Clsd ‘ 𝐽 ) )
57 38 snssd ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → { 𝑚 } ⊆ 𝑀 )
58 35 restcldi ( ( 𝑀 𝐽 ∧ { 𝑚 } ∈ ( Clsd ‘ 𝐽 ) ∧ { 𝑚 } ⊆ 𝑀 ) → { 𝑚 } ∈ ( Clsd ‘ ( 𝐽t 𝑀 ) ) )
59 28 56 57 58 syl3anc ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → { 𝑚 } ∈ ( Clsd ‘ ( 𝐽t 𝑀 ) ) )
60 4 fveq2i ( Clsd ‘ 𝑇 ) = ( Clsd ‘ ( 𝐽t 𝑀 ) )
61 59 60 eleqtrrdi ( ( 𝑅 ∈ CRing ∧ 𝑚 𝑇 ) → { 𝑚 } ∈ ( Clsd ‘ 𝑇 ) )
62 61 ralrimiva ( 𝑅 ∈ CRing → ∀ 𝑚 𝑇 { 𝑚 } ∈ ( Clsd ‘ 𝑇 ) )
63 eqid 𝑇 = 𝑇
64 63 ist1 ( 𝑇 ∈ Fre ↔ ( 𝑇 ∈ Top ∧ ∀ 𝑚 𝑇 { 𝑚 } ∈ ( Clsd ‘ 𝑇 ) ) )
65 9 62 64 sylanbrc ( 𝑅 ∈ CRing → 𝑇 ∈ Fre )