| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zartop.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
| 2 |
|
zartop.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) |
| 3 |
|
zarmxt1.1 |
⊢ 𝑀 = ( MaxIdeal ‘ 𝑅 ) |
| 4 |
|
zarmxt1.2 |
⊢ 𝑇 = ( 𝐽 ↾t 𝑀 ) |
| 5 |
1 2
|
zartop |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ Top ) |
| 6 |
3
|
fvexi |
⊢ 𝑀 ∈ V |
| 7 |
|
resttop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ V ) → ( 𝐽 ↾t 𝑀 ) ∈ Top ) |
| 8 |
4 7
|
eqeltrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ V ) → 𝑇 ∈ Top ) |
| 9 |
5 6 8
|
sylancl |
⊢ ( 𝑅 ∈ CRing → 𝑇 ∈ Top ) |
| 10 |
|
eqid |
⊢ ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) |
| 11 |
10
|
mxidlprm |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 12 |
11
|
ex |
⊢ ( 𝑅 ∈ CRing → ( 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) → 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ) ) |
| 13 |
12
|
ssrdv |
⊢ ( 𝑅 ∈ CRing → ( MaxIdeal ‘ 𝑅 ) ⊆ ( PrmIdeal ‘ 𝑅 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → ( MaxIdeal ‘ 𝑅 ) ⊆ ( PrmIdeal ‘ 𝑅 ) ) |
| 15 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
| 16 |
14 3 15
|
3sstr4g |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑀 ⊆ ( PrmIdeal ‘ 𝑅 ) ) |
| 17 |
|
sseq2 |
⊢ ( 𝑗 = 𝑙 → ( 𝑖 ⊆ 𝑗 ↔ 𝑖 ⊆ 𝑙 ) ) |
| 18 |
17
|
cbvrabv |
⊢ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑙 } |
| 19 |
|
sseq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 ⊆ 𝑙 ↔ 𝑘 ⊆ 𝑙 ) ) |
| 20 |
19
|
rabbidv |
⊢ ( 𝑖 = 𝑘 → { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑙 } = { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑙 } ) |
| 21 |
18 20
|
eqtrid |
⊢ ( 𝑖 = 𝑘 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } = { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑙 } ) |
| 22 |
21
|
cbvmptv |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) = ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑙 } ) |
| 23 |
1 2 15 22
|
zartopn |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ∧ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) = ( Clsd ‘ 𝐽 ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ∧ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) = ( Clsd ‘ 𝐽 ) ) ) |
| 25 |
24
|
simpld |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ) |
| 26 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) → ( PrmIdeal ‘ 𝑅 ) = ∪ 𝐽 ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → ( PrmIdeal ‘ 𝑅 ) = ∪ 𝐽 ) |
| 28 |
16 27
|
sseqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑀 ⊆ ∪ 𝐽 ) |
| 29 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑅 ∈ CRing ) |
| 30 |
29
|
crngringd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑅 ∈ Ring ) |
| 31 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑚 ∈ ∪ 𝑇 ) |
| 32 |
4
|
unieqi |
⊢ ∪ 𝑇 = ∪ ( 𝐽 ↾t 𝑀 ) |
| 33 |
31 32
|
eleqtrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑚 ∈ ∪ ( 𝐽 ↾t 𝑀 ) ) |
| 34 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝐽 ∈ Top ) |
| 35 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 36 |
35
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ⊆ ∪ 𝐽 ) → 𝑀 = ∪ ( 𝐽 ↾t 𝑀 ) ) |
| 37 |
34 28 36
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑀 = ∪ ( 𝐽 ↾t 𝑀 ) ) |
| 38 |
33 37
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑚 ∈ 𝑀 ) |
| 39 |
38 3
|
eleqtrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 40 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 41 |
40
|
mxidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑚 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 42 |
30 39 41
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑚 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 43 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 44 |
22 43
|
zarclssn |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ( LIdeal ‘ 𝑅 ) ) → ( { 𝑚 } = ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ‘ 𝑚 ) ↔ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ) |
| 45 |
44
|
biimpar |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → { 𝑚 } = ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ‘ 𝑚 ) ) |
| 46 |
29 42 39 45
|
syl21anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → { 𝑚 } = ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ‘ 𝑚 ) ) |
| 47 |
22
|
funmpt2 |
⊢ Fun ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) |
| 48 |
|
fvex |
⊢ ( PrmIdeal ‘ 𝑅 ) ∈ V |
| 49 |
48
|
rabex |
⊢ { 𝑙 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘 ⊆ 𝑙 } ∈ V |
| 50 |
49 22
|
dmmpti |
⊢ dom ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) = ( LIdeal ‘ 𝑅 ) |
| 51 |
42 50
|
eleqtrrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → 𝑚 ∈ dom ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ) |
| 52 |
|
fvelrn |
⊢ ( ( Fun ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ∧ 𝑚 ∈ dom ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ) → ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ‘ 𝑚 ) ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ) |
| 53 |
47 51 52
|
sylancr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → ( ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ‘ 𝑚 ) ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ) |
| 54 |
46 53
|
eqeltrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → { 𝑚 } ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) ) |
| 55 |
24
|
simprd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖 ⊆ 𝑗 } ) = ( Clsd ‘ 𝐽 ) ) |
| 56 |
54 55
|
eleqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → { 𝑚 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 57 |
38
|
snssd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → { 𝑚 } ⊆ 𝑀 ) |
| 58 |
35
|
restcldi |
⊢ ( ( 𝑀 ⊆ ∪ 𝐽 ∧ { 𝑚 } ∈ ( Clsd ‘ 𝐽 ) ∧ { 𝑚 } ⊆ 𝑀 ) → { 𝑚 } ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑀 ) ) ) |
| 59 |
28 56 57 58
|
syl3anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → { 𝑚 } ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑀 ) ) ) |
| 60 |
4
|
fveq2i |
⊢ ( Clsd ‘ 𝑇 ) = ( Clsd ‘ ( 𝐽 ↾t 𝑀 ) ) |
| 61 |
59 60
|
eleqtrrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇 ) → { 𝑚 } ∈ ( Clsd ‘ 𝑇 ) ) |
| 62 |
61
|
ralrimiva |
⊢ ( 𝑅 ∈ CRing → ∀ 𝑚 ∈ ∪ 𝑇 { 𝑚 } ∈ ( Clsd ‘ 𝑇 ) ) |
| 63 |
|
eqid |
⊢ ∪ 𝑇 = ∪ 𝑇 |
| 64 |
63
|
ist1 |
⊢ ( 𝑇 ∈ Fre ↔ ( 𝑇 ∈ Top ∧ ∀ 𝑚 ∈ ∪ 𝑇 { 𝑚 } ∈ ( Clsd ‘ 𝑇 ) ) ) |
| 65 |
9 62 64
|
sylanbrc |
⊢ ( 𝑅 ∈ CRing → 𝑇 ∈ Fre ) |