Metamath Proof Explorer


Theorem rspectopn

Description: The topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 4-Jun-2024)

Ref Expression
Hypotheses rspecbas.1 S = Spec R
rspectopn.1 I = LIdeal R
rspectopn.2 P = PrmIdeal R
rspectopn.3 J = ran i I j P | ¬ i j
Assertion rspectopn R Ring J = TopOpen S

Proof

Step Hyp Ref Expression
1 rspecbas.1 S = Spec R
2 rspectopn.1 I = LIdeal R
3 rspectopn.2 P = PrmIdeal R
4 rspectopn.3 J = ran i I j P | ¬ i j
5 rspecval R Ring Spec R = IDLsrg R 𝑠 PrmIdeal R
6 3 oveq2i IDLsrg R 𝑠 P = IDLsrg R 𝑠 PrmIdeal R
7 5 1 6 3eqtr4g R Ring S = IDLsrg R 𝑠 P
8 7 fveq2d R Ring TopOpen S = TopOpen IDLsrg R 𝑠 P
9 eqid IDLsrg R 𝑠 P = IDLsrg R 𝑠 P
10 eqid TopOpen IDLsrg R = TopOpen IDLsrg R
11 9 10 resstopn TopOpen IDLsrg R 𝑡 P = TopOpen IDLsrg R 𝑠 P
12 8 11 eqtr4di R Ring TopOpen S = TopOpen IDLsrg R 𝑡 P
13 eqid IDLsrg R = IDLsrg R
14 eqid ran i I j I | ¬ i j = ran i I j I | ¬ i j
15 13 2 14 idlsrgtset R Ring ran i I j I | ¬ i j = TopSet IDLsrg R
16 2 fvexi I V
17 16 rabex j I | ¬ i j V
18 17 a1i R Ring i I j I | ¬ i j V
19 simp2 R Ring i I j I ¬ i j j I
20 13 2 idlsrgbas R Ring I = Base IDLsrg R
21 20 adantr R Ring i I I = Base IDLsrg R
22 21 3ad2ant1 R Ring i I j I ¬ i j I = Base IDLsrg R
23 19 22 eleqtrd R Ring i I j I ¬ i j j Base IDLsrg R
24 23 rabssdv R Ring i I j I | ¬ i j Base IDLsrg R
25 18 24 elpwd R Ring i I j I | ¬ i j 𝒫 Base IDLsrg R
26 25 ralrimiva R Ring i I j I | ¬ i j 𝒫 Base IDLsrg R
27 eqid i I j I | ¬ i j = i I j I | ¬ i j
28 27 rnmptss i I j I | ¬ i j 𝒫 Base IDLsrg R ran i I j I | ¬ i j 𝒫 Base IDLsrg R
29 26 28 syl R Ring ran i I j I | ¬ i j 𝒫 Base IDLsrg R
30 15 29 eqsstrrd R Ring TopSet IDLsrg R 𝒫 Base IDLsrg R
31 eqid Base IDLsrg R = Base IDLsrg R
32 eqid TopSet IDLsrg R = TopSet IDLsrg R
33 31 32 topnid TopSet IDLsrg R 𝒫 Base IDLsrg R TopSet IDLsrg R = TopOpen IDLsrg R
34 30 33 syl R Ring TopSet IDLsrg R = TopOpen IDLsrg R
35 15 34 eqtrd R Ring ran i I j I | ¬ i j = TopOpen IDLsrg R
36 35 oveq1d R Ring ran i I j I | ¬ i j 𝑡 P = TopOpen IDLsrg R 𝑡 P
37 16 mptex i I j I | ¬ i j V
38 37 rnex ran i I j I | ¬ i j V
39 3 fvexi P V
40 elrest ran i I j I | ¬ i j V P V x ran i I j I | ¬ i j 𝑡 P y ran i I j I | ¬ i j x = y P
41 38 39 40 mp2an x ran i I j I | ¬ i j 𝑡 P y ran i I j I | ¬ i j x = y P
42 17 rgenw i I j I | ¬ i j V
43 ineq1 y = j I | ¬ i j y P = j I | ¬ i j P
44 43 eqeq2d y = j I | ¬ i j x = y P x = j I | ¬ i j P
45 27 44 rexrnmptw i I j I | ¬ i j V y ran i I j I | ¬ i j x = y P i I x = j I | ¬ i j P
46 42 45 ax-mp y ran i I j I | ¬ i j x = y P i I x = j I | ¬ i j P
47 inrab2 j I | ¬ i j P = j I P | ¬ i j
48 prmidlssidl R Ring PrmIdeal R LIdeal R
49 48 3 2 3sstr4g R Ring P I
50 sseqin2 P I I P = P
51 49 50 sylib R Ring I P = P
52 51 rabeqdv R Ring j I P | ¬ i j = j P | ¬ i j
53 47 52 eqtrid R Ring j I | ¬ i j P = j P | ¬ i j
54 53 eqeq2d R Ring x = j I | ¬ i j P x = j P | ¬ i j
55 54 rexbidv R Ring i I x = j I | ¬ i j P i I x = j P | ¬ i j
56 46 55 bitrid R Ring y ran i I j I | ¬ i j x = y P i I x = j P | ¬ i j
57 41 56 bitrid R Ring x ran i I j I | ¬ i j 𝑡 P i I x = j P | ¬ i j
58 4 eleq2i x J x ran i I j P | ¬ i j
59 eqid i I j P | ¬ i j = i I j P | ¬ i j
60 39 rabex j P | ¬ i j V
61 59 60 elrnmpti x ran i I j P | ¬ i j i I x = j P | ¬ i j
62 58 61 bitri x J i I x = j P | ¬ i j
63 57 62 bitr4di R Ring x ran i I j I | ¬ i j 𝑡 P x J
64 63 eqrdv R Ring ran i I j I | ¬ i j 𝑡 P = J
65 12 36 64 3eqtr2rd R Ring J = TopOpen S