Metamath Proof Explorer


Theorem zarcls0

Description: The closure of the identity ideal in the Zariski topology. Proposition 1.1.2(i) of EGA p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zarclsx.1 V = i LIdeal R j PrmIdeal R | i j
zarcls0.1 P = PrmIdeal R
zarcls0.2 0 ˙ = 0 R
Assertion zarcls0 R Ring V 0 ˙ = P

Proof

Step Hyp Ref Expression
1 zarclsx.1 V = i LIdeal R j PrmIdeal R | i j
2 zarcls0.1 P = PrmIdeal R
3 zarcls0.2 0 ˙ = 0 R
4 1 a1i R Ring V = i LIdeal R j PrmIdeal R | i j
5 simplr R Ring i = 0 ˙ j PrmIdeal R i = 0 ˙
6 simpll R Ring i = 0 ˙ j PrmIdeal R R Ring
7 prmidlidl R Ring j PrmIdeal R j LIdeal R
8 6 7 sylancom R Ring i = 0 ˙ j PrmIdeal R j LIdeal R
9 eqid LIdeal R = LIdeal R
10 9 3 lidl0cl R Ring j LIdeal R 0 ˙ j
11 6 8 10 syl2anc R Ring i = 0 ˙ j PrmIdeal R 0 ˙ j
12 11 snssd R Ring i = 0 ˙ j PrmIdeal R 0 ˙ j
13 5 12 eqsstrd R Ring i = 0 ˙ j PrmIdeal R i j
14 13 ralrimiva R Ring i = 0 ˙ j PrmIdeal R i j
15 rabid2 PrmIdeal R = j PrmIdeal R | i j j PrmIdeal R i j
16 14 15 sylibr R Ring i = 0 ˙ PrmIdeal R = j PrmIdeal R | i j
17 2 16 eqtr2id R Ring i = 0 ˙ j PrmIdeal R | i j = P
18 9 3 lidl0 R Ring 0 ˙ LIdeal R
19 2 fvexi P V
20 19 a1i R Ring P V
21 4 17 18 20 fvmptd R Ring V 0 ˙ = P