| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 |  |-  V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 2 |  | zarcls0.1 |  |-  P = ( PrmIdeal ` R ) | 
						
							| 3 |  | zarcls0.2 |  |-  .0. = ( 0g ` R ) | 
						
							| 4 | 1 | a1i |  |-  ( R e. Ring -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) | 
						
							| 5 |  | simplr |  |-  ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> i = { .0. } ) | 
						
							| 6 |  | simpll |  |-  ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> R e. Ring ) | 
						
							| 7 |  | prmidlidl |  |-  ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) | 
						
							| 8 | 6 7 | sylancom |  |-  ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) | 
						
							| 9 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 10 | 9 3 | lidl0cl |  |-  ( ( R e. Ring /\ j e. ( LIdeal ` R ) ) -> .0. e. j ) | 
						
							| 11 | 6 8 10 | syl2anc |  |-  ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> .0. e. j ) | 
						
							| 12 | 11 | snssd |  |-  ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> { .0. } C_ j ) | 
						
							| 13 | 5 12 | eqsstrd |  |-  ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> i C_ j ) | 
						
							| 14 | 13 | ralrimiva |  |-  ( ( R e. Ring /\ i = { .0. } ) -> A. j e. ( PrmIdeal ` R ) i C_ j ) | 
						
							| 15 |  | rabid2 |  |-  ( ( PrmIdeal ` R ) = { j e. ( PrmIdeal ` R ) | i C_ j } <-> A. j e. ( PrmIdeal ` R ) i C_ j ) | 
						
							| 16 | 14 15 | sylibr |  |-  ( ( R e. Ring /\ i = { .0. } ) -> ( PrmIdeal ` R ) = { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 17 | 2 16 | eqtr2id |  |-  ( ( R e. Ring /\ i = { .0. } ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = P ) | 
						
							| 18 | 9 3 | lidl0 |  |-  ( R e. Ring -> { .0. } e. ( LIdeal ` R ) ) | 
						
							| 19 | 2 | fvexi |  |-  P e. _V | 
						
							| 20 | 19 | a1i |  |-  ( R e. Ring -> P e. _V ) | 
						
							| 21 | 4 17 18 20 | fvmptd |  |-  ( R e. Ring -> ( V ` { .0. } ) = P ) |