| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zarclsx.1 |
|- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) |
| 2 |
|
zarcls0.1 |
|- P = ( PrmIdeal ` R ) |
| 3 |
|
zarcls0.2 |
|- .0. = ( 0g ` R ) |
| 4 |
1
|
a1i |
|- ( R e. Ring -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
| 5 |
|
simplr |
|- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> i = { .0. } ) |
| 6 |
|
simpll |
|- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> R e. Ring ) |
| 7 |
|
prmidlidl |
|- ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) |
| 8 |
6 7
|
sylancom |
|- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) |
| 9 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 10 |
9 3
|
lidl0cl |
|- ( ( R e. Ring /\ j e. ( LIdeal ` R ) ) -> .0. e. j ) |
| 11 |
6 8 10
|
syl2anc |
|- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> .0. e. j ) |
| 12 |
11
|
snssd |
|- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> { .0. } C_ j ) |
| 13 |
5 12
|
eqsstrd |
|- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> i C_ j ) |
| 14 |
13
|
ralrimiva |
|- ( ( R e. Ring /\ i = { .0. } ) -> A. j e. ( PrmIdeal ` R ) i C_ j ) |
| 15 |
|
rabid2 |
|- ( ( PrmIdeal ` R ) = { j e. ( PrmIdeal ` R ) | i C_ j } <-> A. j e. ( PrmIdeal ` R ) i C_ j ) |
| 16 |
14 15
|
sylibr |
|- ( ( R e. Ring /\ i = { .0. } ) -> ( PrmIdeal ` R ) = { j e. ( PrmIdeal ` R ) | i C_ j } ) |
| 17 |
2 16
|
eqtr2id |
|- ( ( R e. Ring /\ i = { .0. } ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = P ) |
| 18 |
9 3
|
lidl0 |
|- ( R e. Ring -> { .0. } e. ( LIdeal ` R ) ) |
| 19 |
2
|
fvexi |
|- P e. _V |
| 20 |
19
|
a1i |
|- ( R e. Ring -> P e. _V ) |
| 21 |
4 17 18 20
|
fvmptd |
|- ( R e. Ring -> ( V ` { .0. } ) = P ) |