Step |
Hyp |
Ref |
Expression |
1 |
|
zarclsx.1 |
|- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) |
2 |
|
zarcls1.1 |
|- B = ( Base ` R ) |
3 |
|
simplr |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( V ` I ) = (/) ) /\ I =/= B ) -> ( V ` I ) = (/) ) |
4 |
|
sseq2 |
|- ( j = m -> ( I C_ j <-> I C_ m ) ) |
5 |
|
eqid |
|- ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) |
6 |
5
|
mxidlprm |
|- ( ( R e. CRing /\ m e. ( MaxIdeal ` R ) ) -> m e. ( PrmIdeal ` R ) ) |
7 |
6
|
ad5ant14 |
|- ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> m e. ( PrmIdeal ` R ) ) |
8 |
|
simpr |
|- ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> I C_ m ) |
9 |
4 7 8
|
elrabd |
|- ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> m e. { j e. ( PrmIdeal ` R ) | I C_ j } ) |
10 |
1
|
a1i |
|- ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
11 |
|
sseq1 |
|- ( i = I -> ( i C_ j <-> I C_ j ) ) |
12 |
11
|
rabbidv |
|- ( i = I -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | I C_ j } ) |
13 |
12
|
adantl |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) /\ i = I ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | I C_ j } ) |
14 |
|
simp-4r |
|- ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> I e. ( LIdeal ` R ) ) |
15 |
|
fvex |
|- ( PrmIdeal ` R ) e. _V |
16 |
15
|
rabex |
|- { j e. ( PrmIdeal ` R ) | I C_ j } e. _V |
17 |
16
|
a1i |
|- ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> { j e. ( PrmIdeal ` R ) | I C_ j } e. _V ) |
18 |
10 13 14 17
|
fvmptd |
|- ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> ( V ` I ) = { j e. ( PrmIdeal ` R ) | I C_ j } ) |
19 |
9 18
|
eleqtrrd |
|- ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> m e. ( V ` I ) ) |
20 |
|
ne0i |
|- ( m e. ( V ` I ) -> ( V ` I ) =/= (/) ) |
21 |
19 20
|
syl |
|- ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> ( V ` I ) =/= (/) ) |
22 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
23 |
2
|
ssmxidl |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> E. m e. ( MaxIdeal ` R ) I C_ m ) |
24 |
23
|
3expa |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) -> E. m e. ( MaxIdeal ` R ) I C_ m ) |
25 |
22 24
|
sylanl1 |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) -> E. m e. ( MaxIdeal ` R ) I C_ m ) |
26 |
21 25
|
r19.29a |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) -> ( V ` I ) =/= (/) ) |
27 |
26
|
adantlr |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( V ` I ) = (/) ) /\ I =/= B ) -> ( V ` I ) =/= (/) ) |
28 |
27
|
neneqd |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( V ` I ) = (/) ) /\ I =/= B ) -> -. ( V ` I ) = (/) ) |
29 |
3 28
|
pm2.65da |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( V ` I ) = (/) ) -> -. I =/= B ) |
30 |
|
nne |
|- ( -. I =/= B <-> I = B ) |
31 |
29 30
|
sylib |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( V ` I ) = (/) ) -> I = B ) |
32 |
|
fveq2 |
|- ( I = B -> ( V ` I ) = ( V ` B ) ) |
33 |
32
|
adantl |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I = B ) -> ( V ` I ) = ( V ` B ) ) |
34 |
1
|
a1i |
|- ( R e. Ring -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
35 |
|
sseq1 |
|- ( i = B -> ( i C_ j <-> B C_ j ) ) |
36 |
35
|
adantl |
|- ( ( R e. Ring /\ i = B ) -> ( i C_ j <-> B C_ j ) ) |
37 |
36
|
rabbidv |
|- ( ( R e. Ring /\ i = B ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | B C_ j } ) |
38 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
39 |
38 2
|
lidl1 |
|- ( R e. Ring -> B e. ( LIdeal ` R ) ) |
40 |
15
|
rabex |
|- { j e. ( PrmIdeal ` R ) | B C_ j } e. _V |
41 |
40
|
a1i |
|- ( R e. Ring -> { j e. ( PrmIdeal ` R ) | B C_ j } e. _V ) |
42 |
34 37 39 41
|
fvmptd |
|- ( R e. Ring -> ( V ` B ) = { j e. ( PrmIdeal ` R ) | B C_ j } ) |
43 |
|
prmidlidl |
|- ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) |
44 |
2 38
|
lidlss |
|- ( j e. ( LIdeal ` R ) -> j C_ B ) |
45 |
43 44
|
syl |
|- ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j C_ B ) |
46 |
45
|
adantr |
|- ( ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) /\ B C_ j ) -> j C_ B ) |
47 |
|
simpr |
|- ( ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) /\ B C_ j ) -> B C_ j ) |
48 |
46 47
|
eqssd |
|- ( ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) /\ B C_ j ) -> j = B ) |
49 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
50 |
2 49
|
prmidlnr |
|- ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j =/= B ) |
51 |
50
|
adantr |
|- ( ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) /\ B C_ j ) -> j =/= B ) |
52 |
51
|
neneqd |
|- ( ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) /\ B C_ j ) -> -. j = B ) |
53 |
48 52
|
pm2.65da |
|- ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> -. B C_ j ) |
54 |
53
|
ralrimiva |
|- ( R e. Ring -> A. j e. ( PrmIdeal ` R ) -. B C_ j ) |
55 |
|
rabeq0 |
|- ( { j e. ( PrmIdeal ` R ) | B C_ j } = (/) <-> A. j e. ( PrmIdeal ` R ) -. B C_ j ) |
56 |
54 55
|
sylibr |
|- ( R e. Ring -> { j e. ( PrmIdeal ` R ) | B C_ j } = (/) ) |
57 |
42 56
|
eqtrd |
|- ( R e. Ring -> ( V ` B ) = (/) ) |
58 |
22 57
|
syl |
|- ( R e. CRing -> ( V ` B ) = (/) ) |
59 |
58
|
ad2antrr |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I = B ) -> ( V ` B ) = (/) ) |
60 |
33 59
|
eqtrd |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I = B ) -> ( V ` I ) = (/) ) |
61 |
31 60
|
impbida |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( ( V ` I ) = (/) <-> I = B ) ) |