| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 |  |-  V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 2 |  | zarcls1.1 |  |-  B = ( Base ` R ) | 
						
							| 3 |  | simplr |  |-  ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( V ` I ) = (/) ) /\ I =/= B ) -> ( V ` I ) = (/) ) | 
						
							| 4 |  | sseq2 |  |-  ( j = m -> ( I C_ j <-> I C_ m ) ) | 
						
							| 5 |  | eqid |  |-  ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) | 
						
							| 6 | 5 | mxidlprm |  |-  ( ( R e. CRing /\ m e. ( MaxIdeal ` R ) ) -> m e. ( PrmIdeal ` R ) ) | 
						
							| 7 | 6 | ad5ant14 |  |-  ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> m e. ( PrmIdeal ` R ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> I C_ m ) | 
						
							| 9 | 4 7 8 | elrabd |  |-  ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> m e. { j e. ( PrmIdeal ` R ) | I C_ j } ) | 
						
							| 10 | 1 | a1i |  |-  ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) | 
						
							| 11 |  | sseq1 |  |-  ( i = I -> ( i C_ j <-> I C_ j ) ) | 
						
							| 12 | 11 | rabbidv |  |-  ( i = I -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | I C_ j } ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) /\ i = I ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | I C_ j } ) | 
						
							| 14 |  | simp-4r |  |-  ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> I e. ( LIdeal ` R ) ) | 
						
							| 15 |  | fvex |  |-  ( PrmIdeal ` R ) e. _V | 
						
							| 16 | 15 | rabex |  |-  { j e. ( PrmIdeal ` R ) | I C_ j } e. _V | 
						
							| 17 | 16 | a1i |  |-  ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> { j e. ( PrmIdeal ` R ) | I C_ j } e. _V ) | 
						
							| 18 | 10 13 14 17 | fvmptd |  |-  ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> ( V ` I ) = { j e. ( PrmIdeal ` R ) | I C_ j } ) | 
						
							| 19 | 9 18 | eleqtrrd |  |-  ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> m e. ( V ` I ) ) | 
						
							| 20 |  | ne0i |  |-  ( m e. ( V ` I ) -> ( V ` I ) =/= (/) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ I C_ m ) -> ( V ` I ) =/= (/) ) | 
						
							| 22 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 23 | 2 | ssmxidl |  |-  ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> E. m e. ( MaxIdeal ` R ) I C_ m ) | 
						
							| 24 | 23 | 3expa |  |-  ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) -> E. m e. ( MaxIdeal ` R ) I C_ m ) | 
						
							| 25 | 22 24 | sylanl1 |  |-  ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) -> E. m e. ( MaxIdeal ` R ) I C_ m ) | 
						
							| 26 | 21 25 | r19.29a |  |-  ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I =/= B ) -> ( V ` I ) =/= (/) ) | 
						
							| 27 | 26 | adantlr |  |-  ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( V ` I ) = (/) ) /\ I =/= B ) -> ( V ` I ) =/= (/) ) | 
						
							| 28 | 27 | neneqd |  |-  ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( V ` I ) = (/) ) /\ I =/= B ) -> -. ( V ` I ) = (/) ) | 
						
							| 29 | 3 28 | pm2.65da |  |-  ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( V ` I ) = (/) ) -> -. I =/= B ) | 
						
							| 30 |  | nne |  |-  ( -. I =/= B <-> I = B ) | 
						
							| 31 | 29 30 | sylib |  |-  ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( V ` I ) = (/) ) -> I = B ) | 
						
							| 32 |  | fveq2 |  |-  ( I = B -> ( V ` I ) = ( V ` B ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I = B ) -> ( V ` I ) = ( V ` B ) ) | 
						
							| 34 | 1 | a1i |  |-  ( R e. Ring -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) | 
						
							| 35 |  | sseq1 |  |-  ( i = B -> ( i C_ j <-> B C_ j ) ) | 
						
							| 36 | 35 | adantl |  |-  ( ( R e. Ring /\ i = B ) -> ( i C_ j <-> B C_ j ) ) | 
						
							| 37 | 36 | rabbidv |  |-  ( ( R e. Ring /\ i = B ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | B C_ j } ) | 
						
							| 38 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 39 | 38 2 | lidl1 |  |-  ( R e. Ring -> B e. ( LIdeal ` R ) ) | 
						
							| 40 | 15 | rabex |  |-  { j e. ( PrmIdeal ` R ) | B C_ j } e. _V | 
						
							| 41 | 40 | a1i |  |-  ( R e. Ring -> { j e. ( PrmIdeal ` R ) | B C_ j } e. _V ) | 
						
							| 42 | 34 37 39 41 | fvmptd |  |-  ( R e. Ring -> ( V ` B ) = { j e. ( PrmIdeal ` R ) | B C_ j } ) | 
						
							| 43 |  | prmidlidl |  |-  ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) | 
						
							| 44 | 2 38 | lidlss |  |-  ( j e. ( LIdeal ` R ) -> j C_ B ) | 
						
							| 45 | 43 44 | syl |  |-  ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j C_ B ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) /\ B C_ j ) -> j C_ B ) | 
						
							| 47 |  | simpr |  |-  ( ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) /\ B C_ j ) -> B C_ j ) | 
						
							| 48 | 46 47 | eqssd |  |-  ( ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) /\ B C_ j ) -> j = B ) | 
						
							| 49 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 50 | 2 49 | prmidlnr |  |-  ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j =/= B ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) /\ B C_ j ) -> j =/= B ) | 
						
							| 52 | 51 | neneqd |  |-  ( ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) /\ B C_ j ) -> -. j = B ) | 
						
							| 53 | 48 52 | pm2.65da |  |-  ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> -. B C_ j ) | 
						
							| 54 | 53 | ralrimiva |  |-  ( R e. Ring -> A. j e. ( PrmIdeal ` R ) -. B C_ j ) | 
						
							| 55 |  | rabeq0 |  |-  ( { j e. ( PrmIdeal ` R ) | B C_ j } = (/) <-> A. j e. ( PrmIdeal ` R ) -. B C_ j ) | 
						
							| 56 | 54 55 | sylibr |  |-  ( R e. Ring -> { j e. ( PrmIdeal ` R ) | B C_ j } = (/) ) | 
						
							| 57 | 42 56 | eqtrd |  |-  ( R e. Ring -> ( V ` B ) = (/) ) | 
						
							| 58 | 22 57 | syl |  |-  ( R e. CRing -> ( V ` B ) = (/) ) | 
						
							| 59 | 58 | ad2antrr |  |-  ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I = B ) -> ( V ` B ) = (/) ) | 
						
							| 60 | 33 59 | eqtrd |  |-  ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I = B ) -> ( V ` I ) = (/) ) | 
						
							| 61 | 31 60 | impbida |  |-  ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( ( V ` I ) = (/) <-> I = B ) ) |