Step |
Hyp |
Ref |
Expression |
1 |
|
zarclsx.1 |
|
2 |
|
zarcls1.1 |
|
3 |
|
simplr |
|
4 |
|
sseq2 |
|
5 |
|
eqid |
|
6 |
5
|
mxidlprm |
|
7 |
6
|
ad5ant14 |
|
8 |
|
simpr |
|
9 |
4 7 8
|
elrabd |
|
10 |
1
|
a1i |
|
11 |
|
sseq1 |
|
12 |
11
|
rabbidv |
|
13 |
12
|
adantl |
|
14 |
|
simp-4r |
|
15 |
|
fvex |
|
16 |
15
|
rabex |
|
17 |
16
|
a1i |
|
18 |
10 13 14 17
|
fvmptd |
|
19 |
9 18
|
eleqtrrd |
|
20 |
|
ne0i |
|
21 |
19 20
|
syl |
|
22 |
|
crngring |
|
23 |
2
|
ssmxidl |
|
24 |
23
|
3expa |
|
25 |
22 24
|
sylanl1 |
|
26 |
21 25
|
r19.29a |
|
27 |
26
|
adantlr |
|
28 |
27
|
neneqd |
|
29 |
3 28
|
pm2.65da |
|
30 |
|
nne |
|
31 |
29 30
|
sylib |
|
32 |
|
fveq2 |
|
33 |
32
|
adantl |
|
34 |
1
|
a1i |
|
35 |
|
sseq1 |
|
36 |
35
|
adantl |
|
37 |
36
|
rabbidv |
|
38 |
|
eqid |
|
39 |
38 2
|
lidl1 |
|
40 |
15
|
rabex |
|
41 |
40
|
a1i |
|
42 |
34 37 39 41
|
fvmptd |
|
43 |
|
prmidlidl |
|
44 |
2 38
|
lidlss |
|
45 |
43 44
|
syl |
|
46 |
45
|
adantr |
|
47 |
|
simpr |
|
48 |
46 47
|
eqssd |
|
49 |
|
eqid |
|
50 |
2 49
|
prmidlnr |
|
51 |
50
|
adantr |
|
52 |
51
|
neneqd |
|
53 |
48 52
|
pm2.65da |
|
54 |
53
|
ralrimiva |
|
55 |
|
rabeq0 |
|
56 |
54 55
|
sylibr |
|
57 |
42 56
|
eqtrd |
|
58 |
22 57
|
syl |
|
59 |
58
|
ad2antrr |
|
60 |
33 59
|
eqtrd |
|
61 |
31 60
|
impbida |
|