Metamath Proof Explorer


Theorem zarcls1

Description: The unit ideal B is the only ideal whose closure in the Zariski topology is the empty set. Stronger form of the Proposition 1.1.2(i) of EGA p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zarclsx.1 V = i LIdeal R j PrmIdeal R | i j
zarcls1.1 B = Base R
Assertion zarcls1 R CRing I LIdeal R V I = I = B

Proof

Step Hyp Ref Expression
1 zarclsx.1 V = i LIdeal R j PrmIdeal R | i j
2 zarcls1.1 B = Base R
3 simplr R CRing I LIdeal R V I = I B V I =
4 sseq2 j = m I j I m
5 eqid LSSum mulGrp R = LSSum mulGrp R
6 5 mxidlprm R CRing m MaxIdeal R m PrmIdeal R
7 6 ad5ant14 R CRing I LIdeal R I B m MaxIdeal R I m m PrmIdeal R
8 simpr R CRing I LIdeal R I B m MaxIdeal R I m I m
9 4 7 8 elrabd R CRing I LIdeal R I B m MaxIdeal R I m m j PrmIdeal R | I j
10 1 a1i R CRing I LIdeal R I B m MaxIdeal R I m V = i LIdeal R j PrmIdeal R | i j
11 sseq1 i = I i j I j
12 11 rabbidv i = I j PrmIdeal R | i j = j PrmIdeal R | I j
13 12 adantl R CRing I LIdeal R I B m MaxIdeal R I m i = I j PrmIdeal R | i j = j PrmIdeal R | I j
14 simp-4r R CRing I LIdeal R I B m MaxIdeal R I m I LIdeal R
15 fvex PrmIdeal R V
16 15 rabex j PrmIdeal R | I j V
17 16 a1i R CRing I LIdeal R I B m MaxIdeal R I m j PrmIdeal R | I j V
18 10 13 14 17 fvmptd R CRing I LIdeal R I B m MaxIdeal R I m V I = j PrmIdeal R | I j
19 9 18 eleqtrrd R CRing I LIdeal R I B m MaxIdeal R I m m V I
20 ne0i m V I V I
21 19 20 syl R CRing I LIdeal R I B m MaxIdeal R I m V I
22 crngring R CRing R Ring
23 2 ssmxidl R Ring I LIdeal R I B m MaxIdeal R I m
24 23 3expa R Ring I LIdeal R I B m MaxIdeal R I m
25 22 24 sylanl1 R CRing I LIdeal R I B m MaxIdeal R I m
26 21 25 r19.29a R CRing I LIdeal R I B V I
27 26 adantlr R CRing I LIdeal R V I = I B V I
28 27 neneqd R CRing I LIdeal R V I = I B ¬ V I =
29 3 28 pm2.65da R CRing I LIdeal R V I = ¬ I B
30 nne ¬ I B I = B
31 29 30 sylib R CRing I LIdeal R V I = I = B
32 fveq2 I = B V I = V B
33 32 adantl R CRing I LIdeal R I = B V I = V B
34 1 a1i R Ring V = i LIdeal R j PrmIdeal R | i j
35 sseq1 i = B i j B j
36 35 adantl R Ring i = B i j B j
37 36 rabbidv R Ring i = B j PrmIdeal R | i j = j PrmIdeal R | B j
38 eqid LIdeal R = LIdeal R
39 38 2 lidl1 R Ring B LIdeal R
40 15 rabex j PrmIdeal R | B j V
41 40 a1i R Ring j PrmIdeal R | B j V
42 34 37 39 41 fvmptd R Ring V B = j PrmIdeal R | B j
43 prmidlidl R Ring j PrmIdeal R j LIdeal R
44 2 38 lidlss j LIdeal R j B
45 43 44 syl R Ring j PrmIdeal R j B
46 45 adantr R Ring j PrmIdeal R B j j B
47 simpr R Ring j PrmIdeal R B j B j
48 46 47 eqssd R Ring j PrmIdeal R B j j = B
49 eqid R = R
50 2 49 prmidlnr R Ring j PrmIdeal R j B
51 50 adantr R Ring j PrmIdeal R B j j B
52 51 neneqd R Ring j PrmIdeal R B j ¬ j = B
53 48 52 pm2.65da R Ring j PrmIdeal R ¬ B j
54 53 ralrimiva R Ring j PrmIdeal R ¬ B j
55 rabeq0 j PrmIdeal R | B j = j PrmIdeal R ¬ B j
56 54 55 sylibr R Ring j PrmIdeal R | B j =
57 42 56 eqtrd R Ring V B =
58 22 57 syl R CRing V B =
59 58 ad2antrr R CRing I LIdeal R I = B V B =
60 33 59 eqtrd R CRing I LIdeal R I = B V I =
61 31 60 impbida R CRing I LIdeal R V I = I = B