Step |
Hyp |
Ref |
Expression |
1 |
|
zarclsx.1 |
|- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) |
2 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
3 |
2
|
ad4antr |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> R e. Ring ) |
4 |
|
elpwi |
|- ( r e. ~P ( LIdeal ` R ) -> r C_ ( LIdeal ` R ) ) |
5 |
4
|
adantl |
|- ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) -> r C_ ( LIdeal ` R ) ) |
6 |
5
|
adantr |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> r C_ ( LIdeal ` R ) ) |
7 |
6
|
sselda |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i e. r ) -> i e. ( LIdeal ` R ) ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
10 |
8 9
|
lidlss |
|- ( i e. ( LIdeal ` R ) -> i C_ ( Base ` R ) ) |
11 |
7 10
|
syl |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i e. r ) -> i C_ ( Base ` R ) ) |
12 |
11
|
ralrimiva |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> A. i e. r i C_ ( Base ` R ) ) |
13 |
|
unissb |
|- ( U. r C_ ( Base ` R ) <-> A. i e. r i C_ ( Base ` R ) ) |
14 |
12 13
|
sylibr |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> U. r C_ ( Base ` R ) ) |
15 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
16 |
15 8 9
|
rspcl |
|- ( ( R e. Ring /\ U. r C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` U. r ) e. ( LIdeal ` R ) ) |
17 |
3 14 16
|
syl2anc |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( ( RSpan ` R ) ` U. r ) e. ( LIdeal ` R ) ) |
18 |
|
sseq1 |
|- ( i = ( ( RSpan ` R ) ` U. r ) -> ( i C_ j <-> ( ( RSpan ` R ) ` U. r ) C_ j ) ) |
19 |
18
|
rabbidv |
|- ( i = ( ( RSpan ` R ) ` U. r ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) |
20 |
19
|
eqeq2d |
|- ( i = ( ( RSpan ` R ) ` U. r ) -> ( |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } <-> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) ) |
21 |
20
|
adantl |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i = ( ( RSpan ` R ) ` U. r ) ) -> ( |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } <-> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) ) |
22 |
|
simpr |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> S = ( V " r ) ) |
23 |
22
|
inteqd |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = |^| ( V " r ) ) |
24 |
1
|
funmpt2 |
|- Fun V |
25 |
24
|
a1i |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> Fun V ) |
26 |
|
fvex |
|- ( PrmIdeal ` R ) e. _V |
27 |
26
|
rabex |
|- { j e. ( PrmIdeal ` R ) | i C_ j } e. _V |
28 |
27 1
|
dmmpti |
|- dom V = ( LIdeal ` R ) |
29 |
6 28
|
sseqtrrdi |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> r C_ dom V ) |
30 |
|
intimafv |
|- ( ( Fun V /\ r C_ dom V ) -> |^| ( V " r ) = |^|_ l e. r ( V ` l ) ) |
31 |
25 29 30
|
syl2anc |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| ( V " r ) = |^|_ l e. r ( V ` l ) ) |
32 |
23 31
|
eqtrd |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = |^|_ l e. r ( V ` l ) ) |
33 |
|
simplr |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> S = ( V " r ) ) |
34 |
|
simpr |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> r = (/) ) |
35 |
34
|
imaeq2d |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> ( V " r ) = ( V " (/) ) ) |
36 |
|
ima0 |
|- ( V " (/) ) = (/) |
37 |
35 36
|
eqtrdi |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> ( V " r ) = (/) ) |
38 |
33 37
|
eqtrd |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> S = (/) ) |
39 |
|
simp-4r |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> S =/= (/) ) |
40 |
39
|
neneqd |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> -. S = (/) ) |
41 |
38 40
|
pm2.65da |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> -. r = (/) ) |
42 |
41
|
neqned |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> r =/= (/) ) |
43 |
1 15
|
zarclsiin |
|- ( ( R e. Ring /\ r C_ ( LIdeal ` R ) /\ r =/= (/) ) -> |^|_ l e. r ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. r ) ) ) |
44 |
3 6 42 43
|
syl3anc |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^|_ l e. r ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. r ) ) ) |
45 |
1
|
a1i |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
46 |
19
|
adantl |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i = ( ( RSpan ` R ) ` U. r ) ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) |
47 |
26
|
rabex |
|- { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } e. _V |
48 |
47
|
a1i |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } e. _V ) |
49 |
45 46 17 48
|
fvmptd |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( V ` ( ( RSpan ` R ) ` U. r ) ) = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) |
50 |
32 44 49
|
3eqtrd |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) |
51 |
17 21 50
|
rspcedvd |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) |
52 |
|
intex |
|- ( S =/= (/) <-> |^| S e. _V ) |
53 |
52
|
biimpi |
|- ( S =/= (/) -> |^| S e. _V ) |
54 |
53
|
3ad2ant3 |
|- ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> |^| S e. _V ) |
55 |
1
|
elrnmpt |
|- ( |^| S e. _V -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
56 |
54 55
|
syl |
|- ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
57 |
56
|
ad5ant123 |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
58 |
51 57
|
mpbird |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S e. ran V ) |
59 |
|
fvexd |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( LIdeal ` R ) e. _V ) |
60 |
24
|
a1i |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> Fun V ) |
61 |
|
simplr |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> S C_ ran V ) |
62 |
27 1
|
fnmpti |
|- V Fn ( LIdeal ` R ) |
63 |
|
fnima |
|- ( V Fn ( LIdeal ` R ) -> ( V " ( LIdeal ` R ) ) = ran V ) |
64 |
62 63
|
ax-mp |
|- ( V " ( LIdeal ` R ) ) = ran V |
65 |
61 64
|
sseqtrrdi |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> S C_ ( V " ( LIdeal ` R ) ) ) |
66 |
|
ssimaexg |
|- ( ( ( LIdeal ` R ) e. _V /\ Fun V /\ S C_ ( V " ( LIdeal ` R ) ) ) -> E. r ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) ) |
67 |
59 60 65 66
|
syl3anc |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> E. r ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) ) |
68 |
|
vex |
|- r e. _V |
69 |
68
|
a1i |
|- ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r C_ ( LIdeal ` R ) ) -> r e. _V ) |
70 |
|
simpr |
|- ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r C_ ( LIdeal ` R ) ) -> r C_ ( LIdeal ` R ) ) |
71 |
69 70
|
elpwd |
|- ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r C_ ( LIdeal ` R ) ) -> r e. ~P ( LIdeal ` R ) ) |
72 |
71
|
ex |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( r C_ ( LIdeal ` R ) -> r e. ~P ( LIdeal ` R ) ) ) |
73 |
72
|
anim1d |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) -> ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) ) |
74 |
73
|
eximdv |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( E. r ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) -> E. r ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) ) |
75 |
67 74
|
mpd |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> E. r ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) |
76 |
|
df-rex |
|- ( E. r e. ~P ( LIdeal ` R ) S = ( V " r ) <-> E. r ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) |
77 |
75 76
|
sylibr |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> E. r e. ~P ( LIdeal ` R ) S = ( V " r ) ) |
78 |
58 77
|
r19.29a |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> |^| S e. ran V ) |
79 |
78
|
3impa |
|- ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> |^| S e. ran V ) |