| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 |  |-  V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 2 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 3 | 2 | ad4antr |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> R e. Ring ) | 
						
							| 4 |  | elpwi |  |-  ( r e. ~P ( LIdeal ` R ) -> r C_ ( LIdeal ` R ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) -> r C_ ( LIdeal ` R ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> r C_ ( LIdeal ` R ) ) | 
						
							| 7 | 6 | sselda |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i e. r ) -> i e. ( LIdeal ` R ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 9 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 10 | 8 9 | lidlss |  |-  ( i e. ( LIdeal ` R ) -> i C_ ( Base ` R ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i e. r ) -> i C_ ( Base ` R ) ) | 
						
							| 12 | 11 | ralrimiva |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> A. i e. r i C_ ( Base ` R ) ) | 
						
							| 13 |  | unissb |  |-  ( U. r C_ ( Base ` R ) <-> A. i e. r i C_ ( Base ` R ) ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> U. r C_ ( Base ` R ) ) | 
						
							| 15 |  | eqid |  |-  ( RSpan ` R ) = ( RSpan ` R ) | 
						
							| 16 | 15 8 9 | rspcl |  |-  ( ( R e. Ring /\ U. r C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` U. r ) e. ( LIdeal ` R ) ) | 
						
							| 17 | 3 14 16 | syl2anc |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( ( RSpan ` R ) ` U. r ) e. ( LIdeal ` R ) ) | 
						
							| 18 |  | sseq1 |  |-  ( i = ( ( RSpan ` R ) ` U. r ) -> ( i C_ j <-> ( ( RSpan ` R ) ` U. r ) C_ j ) ) | 
						
							| 19 | 18 | rabbidv |  |-  ( i = ( ( RSpan ` R ) ` U. r ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) | 
						
							| 20 | 19 | eqeq2d |  |-  ( i = ( ( RSpan ` R ) ` U. r ) -> ( |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } <-> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i = ( ( RSpan ` R ) ` U. r ) ) -> ( |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } <-> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> S = ( V " r ) ) | 
						
							| 23 | 22 | inteqd |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = |^| ( V " r ) ) | 
						
							| 24 | 1 | funmpt2 |  |-  Fun V | 
						
							| 25 | 24 | a1i |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> Fun V ) | 
						
							| 26 |  | fvex |  |-  ( PrmIdeal ` R ) e. _V | 
						
							| 27 | 26 | rabex |  |-  { j e. ( PrmIdeal ` R ) | i C_ j } e. _V | 
						
							| 28 | 27 1 | dmmpti |  |-  dom V = ( LIdeal ` R ) | 
						
							| 29 | 6 28 | sseqtrrdi |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> r C_ dom V ) | 
						
							| 30 |  | intimafv |  |-  ( ( Fun V /\ r C_ dom V ) -> |^| ( V " r ) = |^|_ l e. r ( V ` l ) ) | 
						
							| 31 | 25 29 30 | syl2anc |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| ( V " r ) = |^|_ l e. r ( V ` l ) ) | 
						
							| 32 | 23 31 | eqtrd |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = |^|_ l e. r ( V ` l ) ) | 
						
							| 33 |  | simplr |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> S = ( V " r ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> r = (/) ) | 
						
							| 35 | 34 | imaeq2d |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> ( V " r ) = ( V " (/) ) ) | 
						
							| 36 |  | ima0 |  |-  ( V " (/) ) = (/) | 
						
							| 37 | 35 36 | eqtrdi |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> ( V " r ) = (/) ) | 
						
							| 38 | 33 37 | eqtrd |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> S = (/) ) | 
						
							| 39 |  | simp-4r |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> S =/= (/) ) | 
						
							| 40 | 39 | neneqd |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> -. S = (/) ) | 
						
							| 41 | 38 40 | pm2.65da |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> -. r = (/) ) | 
						
							| 42 | 41 | neqned |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> r =/= (/) ) | 
						
							| 43 | 1 15 | zarclsiin |  |-  ( ( R e. Ring /\ r C_ ( LIdeal ` R ) /\ r =/= (/) ) -> |^|_ l e. r ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. r ) ) ) | 
						
							| 44 | 3 6 42 43 | syl3anc |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^|_ l e. r ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. r ) ) ) | 
						
							| 45 | 1 | a1i |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) | 
						
							| 46 | 19 | adantl |  |-  ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i = ( ( RSpan ` R ) ` U. r ) ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) | 
						
							| 47 | 26 | rabex |  |-  { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } e. _V | 
						
							| 48 | 47 | a1i |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } e. _V ) | 
						
							| 49 | 45 46 17 48 | fvmptd |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( V ` ( ( RSpan ` R ) ` U. r ) ) = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) | 
						
							| 50 | 32 44 49 | 3eqtrd |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) | 
						
							| 51 | 17 21 50 | rspcedvd |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 52 |  | intex |  |-  ( S =/= (/) <-> |^| S e. _V ) | 
						
							| 53 | 52 | biimpi |  |-  ( S =/= (/) -> |^| S e. _V ) | 
						
							| 54 | 53 | 3ad2ant3 |  |-  ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> |^| S e. _V ) | 
						
							| 55 | 1 | elrnmpt |  |-  ( |^| S e. _V -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) | 
						
							| 57 | 56 | ad5ant123 |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) | 
						
							| 58 | 51 57 | mpbird |  |-  ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S e. ran V ) | 
						
							| 59 |  | fvexd |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( LIdeal ` R ) e. _V ) | 
						
							| 60 | 24 | a1i |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> Fun V ) | 
						
							| 61 |  | simplr |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> S C_ ran V ) | 
						
							| 62 | 27 1 | fnmpti |  |-  V Fn ( LIdeal ` R ) | 
						
							| 63 |  | fnima |  |-  ( V Fn ( LIdeal ` R ) -> ( V " ( LIdeal ` R ) ) = ran V ) | 
						
							| 64 | 62 63 | ax-mp |  |-  ( V " ( LIdeal ` R ) ) = ran V | 
						
							| 65 | 61 64 | sseqtrrdi |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> S C_ ( V " ( LIdeal ` R ) ) ) | 
						
							| 66 |  | ssimaexg |  |-  ( ( ( LIdeal ` R ) e. _V /\ Fun V /\ S C_ ( V " ( LIdeal ` R ) ) ) -> E. r ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) ) | 
						
							| 67 | 59 60 65 66 | syl3anc |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> E. r ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) ) | 
						
							| 68 |  | vex |  |-  r e. _V | 
						
							| 69 | 68 | a1i |  |-  ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r C_ ( LIdeal ` R ) ) -> r e. _V ) | 
						
							| 70 |  | simpr |  |-  ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r C_ ( LIdeal ` R ) ) -> r C_ ( LIdeal ` R ) ) | 
						
							| 71 | 69 70 | elpwd |  |-  ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r C_ ( LIdeal ` R ) ) -> r e. ~P ( LIdeal ` R ) ) | 
						
							| 72 | 71 | ex |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( r C_ ( LIdeal ` R ) -> r e. ~P ( LIdeal ` R ) ) ) | 
						
							| 73 | 72 | anim1d |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) -> ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) ) | 
						
							| 74 | 73 | eximdv |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( E. r ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) -> E. r ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) ) | 
						
							| 75 | 67 74 | mpd |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> E. r ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) | 
						
							| 76 |  | df-rex |  |-  ( E. r e. ~P ( LIdeal ` R ) S = ( V " r ) <-> E. r ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) | 
						
							| 77 | 75 76 | sylibr |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> E. r e. ~P ( LIdeal ` R ) S = ( V " r ) ) | 
						
							| 78 | 58 77 | r19.29a |  |-  ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> |^| S e. ran V ) | 
						
							| 79 | 78 | 3impa |  |-  ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> |^| S e. ran V ) |