| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zarclsx.1 |
|- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) |
| 2 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 3 |
2
|
ad4antr |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> R e. Ring ) |
| 4 |
|
elpwi |
|- ( r e. ~P ( LIdeal ` R ) -> r C_ ( LIdeal ` R ) ) |
| 5 |
4
|
adantl |
|- ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) -> r C_ ( LIdeal ` R ) ) |
| 6 |
5
|
adantr |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> r C_ ( LIdeal ` R ) ) |
| 7 |
6
|
sselda |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i e. r ) -> i e. ( LIdeal ` R ) ) |
| 8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 9 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 10 |
8 9
|
lidlss |
|- ( i e. ( LIdeal ` R ) -> i C_ ( Base ` R ) ) |
| 11 |
7 10
|
syl |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i e. r ) -> i C_ ( Base ` R ) ) |
| 12 |
11
|
ralrimiva |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> A. i e. r i C_ ( Base ` R ) ) |
| 13 |
|
unissb |
|- ( U. r C_ ( Base ` R ) <-> A. i e. r i C_ ( Base ` R ) ) |
| 14 |
12 13
|
sylibr |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> U. r C_ ( Base ` R ) ) |
| 15 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
| 16 |
15 8 9
|
rspcl |
|- ( ( R e. Ring /\ U. r C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` U. r ) e. ( LIdeal ` R ) ) |
| 17 |
3 14 16
|
syl2anc |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( ( RSpan ` R ) ` U. r ) e. ( LIdeal ` R ) ) |
| 18 |
|
sseq1 |
|- ( i = ( ( RSpan ` R ) ` U. r ) -> ( i C_ j <-> ( ( RSpan ` R ) ` U. r ) C_ j ) ) |
| 19 |
18
|
rabbidv |
|- ( i = ( ( RSpan ` R ) ` U. r ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) |
| 20 |
19
|
eqeq2d |
|- ( i = ( ( RSpan ` R ) ` U. r ) -> ( |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } <-> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) ) |
| 21 |
20
|
adantl |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i = ( ( RSpan ` R ) ` U. r ) ) -> ( |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } <-> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) ) |
| 22 |
|
simpr |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> S = ( V " r ) ) |
| 23 |
22
|
inteqd |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = |^| ( V " r ) ) |
| 24 |
1
|
funmpt2 |
|- Fun V |
| 25 |
24
|
a1i |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> Fun V ) |
| 26 |
|
fvex |
|- ( PrmIdeal ` R ) e. _V |
| 27 |
26
|
rabex |
|- { j e. ( PrmIdeal ` R ) | i C_ j } e. _V |
| 28 |
27 1
|
dmmpti |
|- dom V = ( LIdeal ` R ) |
| 29 |
6 28
|
sseqtrrdi |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> r C_ dom V ) |
| 30 |
|
intimafv |
|- ( ( Fun V /\ r C_ dom V ) -> |^| ( V " r ) = |^|_ l e. r ( V ` l ) ) |
| 31 |
25 29 30
|
syl2anc |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| ( V " r ) = |^|_ l e. r ( V ` l ) ) |
| 32 |
23 31
|
eqtrd |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = |^|_ l e. r ( V ` l ) ) |
| 33 |
|
simplr |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> S = ( V " r ) ) |
| 34 |
|
simpr |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> r = (/) ) |
| 35 |
34
|
imaeq2d |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> ( V " r ) = ( V " (/) ) ) |
| 36 |
|
ima0 |
|- ( V " (/) ) = (/) |
| 37 |
35 36
|
eqtrdi |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> ( V " r ) = (/) ) |
| 38 |
33 37
|
eqtrd |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> S = (/) ) |
| 39 |
|
simp-4r |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> S =/= (/) ) |
| 40 |
39
|
neneqd |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ r = (/) ) -> -. S = (/) ) |
| 41 |
38 40
|
pm2.65da |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> -. r = (/) ) |
| 42 |
41
|
neqned |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> r =/= (/) ) |
| 43 |
1 15
|
zarclsiin |
|- ( ( R e. Ring /\ r C_ ( LIdeal ` R ) /\ r =/= (/) ) -> |^|_ l e. r ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. r ) ) ) |
| 44 |
3 6 42 43
|
syl3anc |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^|_ l e. r ( V ` l ) = ( V ` ( ( RSpan ` R ) ` U. r ) ) ) |
| 45 |
1
|
a1i |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
| 46 |
19
|
adantl |
|- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i = ( ( RSpan ` R ) ` U. r ) ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) |
| 47 |
26
|
rabex |
|- { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } e. _V |
| 48 |
47
|
a1i |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } e. _V ) |
| 49 |
45 46 17 48
|
fvmptd |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( V ` ( ( RSpan ` R ) ` U. r ) ) = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) |
| 50 |
32 44 49
|
3eqtrd |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) |
| 51 |
17 21 50
|
rspcedvd |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) |
| 52 |
|
intex |
|- ( S =/= (/) <-> |^| S e. _V ) |
| 53 |
52
|
biimpi |
|- ( S =/= (/) -> |^| S e. _V ) |
| 54 |
53
|
3ad2ant3 |
|- ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> |^| S e. _V ) |
| 55 |
1
|
elrnmpt |
|- ( |^| S e. _V -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
| 56 |
54 55
|
syl |
|- ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
| 57 |
56
|
ad5ant123 |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
| 58 |
51 57
|
mpbird |
|- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S e. ran V ) |
| 59 |
|
fvexd |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( LIdeal ` R ) e. _V ) |
| 60 |
24
|
a1i |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> Fun V ) |
| 61 |
|
simplr |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> S C_ ran V ) |
| 62 |
27 1
|
fnmpti |
|- V Fn ( LIdeal ` R ) |
| 63 |
|
fnima |
|- ( V Fn ( LIdeal ` R ) -> ( V " ( LIdeal ` R ) ) = ran V ) |
| 64 |
62 63
|
ax-mp |
|- ( V " ( LIdeal ` R ) ) = ran V |
| 65 |
61 64
|
sseqtrrdi |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> S C_ ( V " ( LIdeal ` R ) ) ) |
| 66 |
|
ssimaexg |
|- ( ( ( LIdeal ` R ) e. _V /\ Fun V /\ S C_ ( V " ( LIdeal ` R ) ) ) -> E. r ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) ) |
| 67 |
59 60 65 66
|
syl3anc |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> E. r ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) ) |
| 68 |
|
vex |
|- r e. _V |
| 69 |
68
|
a1i |
|- ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r C_ ( LIdeal ` R ) ) -> r e. _V ) |
| 70 |
|
simpr |
|- ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r C_ ( LIdeal ` R ) ) -> r C_ ( LIdeal ` R ) ) |
| 71 |
69 70
|
elpwd |
|- ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r C_ ( LIdeal ` R ) ) -> r e. ~P ( LIdeal ` R ) ) |
| 72 |
71
|
ex |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( r C_ ( LIdeal ` R ) -> r e. ~P ( LIdeal ` R ) ) ) |
| 73 |
72
|
anim1d |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) -> ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) ) |
| 74 |
73
|
eximdv |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> ( E. r ( r C_ ( LIdeal ` R ) /\ S = ( V " r ) ) -> E. r ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) ) |
| 75 |
67 74
|
mpd |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> E. r ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) |
| 76 |
|
df-rex |
|- ( E. r e. ~P ( LIdeal ` R ) S = ( V " r ) <-> E. r ( r e. ~P ( LIdeal ` R ) /\ S = ( V " r ) ) ) |
| 77 |
75 76
|
sylibr |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> E. r e. ~P ( LIdeal ` R ) S = ( V " r ) ) |
| 78 |
58 77
|
r19.29a |
|- ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) -> |^| S e. ran V ) |
| 79 |
78
|
3impa |
|- ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> |^| S e. ran V ) |