| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zarclsx.1 |
|- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) |
| 2 |
|
zarclssn.1 |
|- B = ( LIdeal ` R ) |
| 3 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 4 |
3
|
ad2antrr |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> R e. Ring ) |
| 5 |
|
simplr |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> M e. B ) |
| 6 |
5 2
|
eleqtrdi |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> M e. ( LIdeal ` R ) ) |
| 7 |
|
simpr |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> { M } = ( V ` M ) ) |
| 8 |
5
|
snn0d |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> { M } =/= (/) ) |
| 9 |
7 8
|
eqnetrrd |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> ( V ` M ) =/= (/) ) |
| 10 |
|
simpll |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> R e. CRing ) |
| 11 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 12 |
1 11
|
zarcls1 |
|- ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> ( ( V ` M ) = (/) <-> M = ( Base ` R ) ) ) |
| 13 |
12
|
necon3bid |
|- ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> ( ( V ` M ) =/= (/) <-> M =/= ( Base ` R ) ) ) |
| 14 |
10 6 13
|
syl2anc |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> ( ( V ` M ) =/= (/) <-> M =/= ( Base ` R ) ) ) |
| 15 |
9 14
|
mpbid |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> M =/= ( Base ` R ) ) |
| 16 |
|
simpr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> j C_ m ) |
| 17 |
10
|
ad5antr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> R e. CRing ) |
| 18 |
|
simplr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> m e. ( MaxIdeal ` R ) ) |
| 19 |
|
eqid |
|- ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) |
| 20 |
19
|
mxidlprm |
|- ( ( R e. CRing /\ m e. ( MaxIdeal ` R ) ) -> m e. ( PrmIdeal ` R ) ) |
| 21 |
17 18 20
|
syl2anc |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> m e. ( PrmIdeal ` R ) ) |
| 22 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> M C_ j ) |
| 23 |
22 16
|
sstrd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> M C_ m ) |
| 24 |
1
|
a1i |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
| 25 |
|
sseq1 |
|- ( i = M -> ( i C_ j <-> M C_ j ) ) |
| 26 |
25
|
rabbidv |
|- ( i = M -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | M C_ j } ) |
| 27 |
26
|
adantl |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ i = M ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | M C_ j } ) |
| 28 |
|
fvex |
|- ( PrmIdeal ` R ) e. _V |
| 29 |
28
|
rabex |
|- { j e. ( PrmIdeal ` R ) | M C_ j } e. _V |
| 30 |
29
|
a1i |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> { j e. ( PrmIdeal ` R ) | M C_ j } e. _V ) |
| 31 |
24 27 6 30
|
fvmptd |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> ( V ` M ) = { j e. ( PrmIdeal ` R ) | M C_ j } ) |
| 32 |
7 31
|
eqtr2d |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> { j e. ( PrmIdeal ` R ) | M C_ j } = { M } ) |
| 33 |
|
rabeqsn |
|- ( { j e. ( PrmIdeal ` R ) | M C_ j } = { M } <-> A. j ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) ) |
| 34 |
32 33
|
sylib |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> A. j ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) ) |
| 35 |
34
|
ad5antr |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> A. j ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) ) |
| 36 |
|
vex |
|- m e. _V |
| 37 |
|
eleq1w |
|- ( j = m -> ( j e. ( PrmIdeal ` R ) <-> m e. ( PrmIdeal ` R ) ) ) |
| 38 |
|
sseq2 |
|- ( j = m -> ( M C_ j <-> M C_ m ) ) |
| 39 |
37 38
|
anbi12d |
|- ( j = m -> ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> ( m e. ( PrmIdeal ` R ) /\ M C_ m ) ) ) |
| 40 |
|
eqeq1 |
|- ( j = m -> ( j = M <-> m = M ) ) |
| 41 |
39 40
|
bibi12d |
|- ( j = m -> ( ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) <-> ( ( m e. ( PrmIdeal ` R ) /\ M C_ m ) <-> m = M ) ) ) |
| 42 |
36 41
|
spcv |
|- ( A. j ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) -> ( ( m e. ( PrmIdeal ` R ) /\ M C_ m ) <-> m = M ) ) |
| 43 |
35 42
|
syl |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> ( ( m e. ( PrmIdeal ` R ) /\ M C_ m ) <-> m = M ) ) |
| 44 |
21 23 43
|
mpbi2and |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> m = M ) |
| 45 |
16 44
|
sseqtrd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> j C_ M ) |
| 46 |
45 22
|
eqssd |
|- ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> j = M ) |
| 47 |
3
|
ad5antr |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> R e. Ring ) |
| 48 |
|
simpllr |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> j e. ( LIdeal ` R ) ) |
| 49 |
|
simpr |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> -. j = ( Base ` R ) ) |
| 50 |
49
|
neqned |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> j =/= ( Base ` R ) ) |
| 51 |
11
|
ssmxidl |
|- ( ( R e. Ring /\ j e. ( LIdeal ` R ) /\ j =/= ( Base ` R ) ) -> E. m e. ( MaxIdeal ` R ) j C_ m ) |
| 52 |
47 48 50 51
|
syl3anc |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> E. m e. ( MaxIdeal ` R ) j C_ m ) |
| 53 |
46 52
|
r19.29a |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> j = M ) |
| 54 |
53
|
ex |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( -. j = ( Base ` R ) -> j = M ) ) |
| 55 |
54
|
orrd |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( j = ( Base ` R ) \/ j = M ) ) |
| 56 |
55
|
orcomd |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( j = M \/ j = ( Base ` R ) ) ) |
| 57 |
56
|
ex |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) -> ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) |
| 58 |
57
|
ralrimiva |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) |
| 59 |
6 15 58
|
3jca |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) |
| 60 |
11
|
ismxidl |
|- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) |
| 61 |
60
|
biimpar |
|- ( ( R e. Ring /\ ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` R ) ) |
| 62 |
4 59 61
|
syl2anc |
|- ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> M e. ( MaxIdeal ` R ) ) |
| 63 |
1
|
a1i |
|- ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) |
| 64 |
26
|
adantl |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ i = M ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | M C_ j } ) |
| 65 |
11
|
mxidlidl |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) |
| 66 |
3 65
|
sylan |
|- ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) |
| 67 |
29
|
a1i |
|- ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> { j e. ( PrmIdeal ` R ) | M C_ j } e. _V ) |
| 68 |
63 64 66 67
|
fvmptd |
|- ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> ( V ` M ) = { j e. ( PrmIdeal ` R ) | M C_ j } ) |
| 69 |
3
|
ad2antrr |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> R e. Ring ) |
| 70 |
|
simplr |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> M e. ( MaxIdeal ` R ) ) |
| 71 |
|
simprl |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> j e. ( PrmIdeal ` R ) ) |
| 72 |
|
prmidlidl |
|- ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) |
| 73 |
69 71 72
|
syl2anc |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> j e. ( LIdeal ` R ) ) |
| 74 |
|
simprr |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> M C_ j ) |
| 75 |
73 74
|
jca |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> ( j e. ( LIdeal ` R ) /\ M C_ j ) ) |
| 76 |
11
|
mxidlmax |
|- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( LIdeal ` R ) /\ M C_ j ) ) -> ( j = M \/ j = ( Base ` R ) ) ) |
| 77 |
69 70 75 76
|
syl21anc |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> ( j = M \/ j = ( Base ` R ) ) ) |
| 78 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 79 |
11 78
|
prmidlnr |
|- ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j =/= ( Base ` R ) ) |
| 80 |
69 71 79
|
syl2anc |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> j =/= ( Base ` R ) ) |
| 81 |
80
|
neneqd |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> -. j = ( Base ` R ) ) |
| 82 |
77 81
|
olcnd |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> j = M ) |
| 83 |
|
simpr |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> j = M ) |
| 84 |
19
|
mxidlprm |
|- ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> M e. ( PrmIdeal ` R ) ) |
| 85 |
84
|
adantr |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> M e. ( PrmIdeal ` R ) ) |
| 86 |
83 85
|
eqeltrd |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> j e. ( PrmIdeal ` R ) ) |
| 87 |
|
ssidd |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> j C_ j ) |
| 88 |
83 87
|
eqsstrrd |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> M C_ j ) |
| 89 |
86 88
|
jca |
|- ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) |
| 90 |
82 89
|
impbida |
|- ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) ) |
| 91 |
90
|
alrimiv |
|- ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> A. j ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) ) |
| 92 |
91 33
|
sylibr |
|- ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> { j e. ( PrmIdeal ` R ) | M C_ j } = { M } ) |
| 93 |
68 92
|
eqtr2d |
|- ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> { M } = ( V ` M ) ) |
| 94 |
93
|
adantlr |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. ( MaxIdeal ` R ) ) -> { M } = ( V ` M ) ) |
| 95 |
62 94
|
impbida |
|- ( ( R e. CRing /\ M e. B ) -> ( { M } = ( V ` M ) <-> M e. ( MaxIdeal ` R ) ) ) |