| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 |  |-  V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) | 
						
							| 2 |  | zarclssn.1 |  |-  B = ( LIdeal ` R ) | 
						
							| 3 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 4 | 3 | ad2antrr |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> R e. Ring ) | 
						
							| 5 |  | simplr |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> M e. B ) | 
						
							| 6 | 5 2 | eleqtrdi |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> M e. ( LIdeal ` R ) ) | 
						
							| 7 |  | simpr |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> { M } = ( V ` M ) ) | 
						
							| 8 | 5 | snn0d |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> { M } =/= (/) ) | 
						
							| 9 | 7 8 | eqnetrrd |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> ( V ` M ) =/= (/) ) | 
						
							| 10 |  | simpll |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> R e. CRing ) | 
						
							| 11 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 12 | 1 11 | zarcls1 |  |-  ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> ( ( V ` M ) = (/) <-> M = ( Base ` R ) ) ) | 
						
							| 13 | 12 | necon3bid |  |-  ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> ( ( V ` M ) =/= (/) <-> M =/= ( Base ` R ) ) ) | 
						
							| 14 | 10 6 13 | syl2anc |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> ( ( V ` M ) =/= (/) <-> M =/= ( Base ` R ) ) ) | 
						
							| 15 | 9 14 | mpbid |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> M =/= ( Base ` R ) ) | 
						
							| 16 |  | simpr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> j C_ m ) | 
						
							| 17 | 10 | ad5antr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> R e. CRing ) | 
						
							| 18 |  | simplr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> m e. ( MaxIdeal ` R ) ) | 
						
							| 19 |  | eqid |  |-  ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) | 
						
							| 20 | 19 | mxidlprm |  |-  ( ( R e. CRing /\ m e. ( MaxIdeal ` R ) ) -> m e. ( PrmIdeal ` R ) ) | 
						
							| 21 | 17 18 20 | syl2anc |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> m e. ( PrmIdeal ` R ) ) | 
						
							| 22 |  | simp-4r |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> M C_ j ) | 
						
							| 23 | 22 16 | sstrd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> M C_ m ) | 
						
							| 24 | 1 | a1i |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) | 
						
							| 25 |  | sseq1 |  |-  ( i = M -> ( i C_ j <-> M C_ j ) ) | 
						
							| 26 | 25 | rabbidv |  |-  ( i = M -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | M C_ j } ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ i = M ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | M C_ j } ) | 
						
							| 28 |  | fvex |  |-  ( PrmIdeal ` R ) e. _V | 
						
							| 29 | 28 | rabex |  |-  { j e. ( PrmIdeal ` R ) | M C_ j } e. _V | 
						
							| 30 | 29 | a1i |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> { j e. ( PrmIdeal ` R ) | M C_ j } e. _V ) | 
						
							| 31 | 24 27 6 30 | fvmptd |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> ( V ` M ) = { j e. ( PrmIdeal ` R ) | M C_ j } ) | 
						
							| 32 | 7 31 | eqtr2d |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> { j e. ( PrmIdeal ` R ) | M C_ j } = { M } ) | 
						
							| 33 |  | rabeqsn |  |-  ( { j e. ( PrmIdeal ` R ) | M C_ j } = { M } <-> A. j ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) ) | 
						
							| 34 | 32 33 | sylib |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> A. j ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) ) | 
						
							| 35 | 34 | ad5antr |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> A. j ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) ) | 
						
							| 36 |  | vex |  |-  m e. _V | 
						
							| 37 |  | eleq1w |  |-  ( j = m -> ( j e. ( PrmIdeal ` R ) <-> m e. ( PrmIdeal ` R ) ) ) | 
						
							| 38 |  | sseq2 |  |-  ( j = m -> ( M C_ j <-> M C_ m ) ) | 
						
							| 39 | 37 38 | anbi12d |  |-  ( j = m -> ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> ( m e. ( PrmIdeal ` R ) /\ M C_ m ) ) ) | 
						
							| 40 |  | eqeq1 |  |-  ( j = m -> ( j = M <-> m = M ) ) | 
						
							| 41 | 39 40 | bibi12d |  |-  ( j = m -> ( ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) <-> ( ( m e. ( PrmIdeal ` R ) /\ M C_ m ) <-> m = M ) ) ) | 
						
							| 42 | 36 41 | spcv |  |-  ( A. j ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) -> ( ( m e. ( PrmIdeal ` R ) /\ M C_ m ) <-> m = M ) ) | 
						
							| 43 | 35 42 | syl |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> ( ( m e. ( PrmIdeal ` R ) /\ M C_ m ) <-> m = M ) ) | 
						
							| 44 | 21 23 43 | mpbi2and |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> m = M ) | 
						
							| 45 | 16 44 | sseqtrd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> j C_ M ) | 
						
							| 46 | 45 22 | eqssd |  |-  ( ( ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) /\ m e. ( MaxIdeal ` R ) ) /\ j C_ m ) -> j = M ) | 
						
							| 47 | 3 | ad5antr |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> R e. Ring ) | 
						
							| 48 |  | simpllr |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> j e. ( LIdeal ` R ) ) | 
						
							| 49 |  | simpr |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> -. j = ( Base ` R ) ) | 
						
							| 50 | 49 | neqned |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> j =/= ( Base ` R ) ) | 
						
							| 51 | 11 | ssmxidl |  |-  ( ( R e. Ring /\ j e. ( LIdeal ` R ) /\ j =/= ( Base ` R ) ) -> E. m e. ( MaxIdeal ` R ) j C_ m ) | 
						
							| 52 | 47 48 50 51 | syl3anc |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> E. m e. ( MaxIdeal ` R ) j C_ m ) | 
						
							| 53 | 46 52 | r19.29a |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = ( Base ` R ) ) -> j = M ) | 
						
							| 54 | 53 | ex |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( -. j = ( Base ` R ) -> j = M ) ) | 
						
							| 55 | 54 | orrd |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( j = ( Base ` R ) \/ j = M ) ) | 
						
							| 56 | 55 | orcomd |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( j = M \/ j = ( Base ` R ) ) ) | 
						
							| 57 | 56 | ex |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) /\ j e. ( LIdeal ` R ) ) -> ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) | 
						
							| 58 | 57 | ralrimiva |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) | 
						
							| 59 | 6 15 58 | 3jca |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) | 
						
							| 60 | 11 | ismxidl |  |-  ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) | 
						
							| 61 | 60 | biimpar |  |-  ( ( R e. Ring /\ ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` R ) ) | 
						
							| 62 | 4 59 61 | syl2anc |  |-  ( ( ( R e. CRing /\ M e. B ) /\ { M } = ( V ` M ) ) -> M e. ( MaxIdeal ` R ) ) | 
						
							| 63 | 1 | a1i |  |-  ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) | 
						
							| 64 | 26 | adantl |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ i = M ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | M C_ j } ) | 
						
							| 65 | 11 | mxidlidl |  |-  ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) | 
						
							| 66 | 3 65 | sylan |  |-  ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) | 
						
							| 67 | 29 | a1i |  |-  ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> { j e. ( PrmIdeal ` R ) | M C_ j } e. _V ) | 
						
							| 68 | 63 64 66 67 | fvmptd |  |-  ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> ( V ` M ) = { j e. ( PrmIdeal ` R ) | M C_ j } ) | 
						
							| 69 | 3 | ad2antrr |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> R e. Ring ) | 
						
							| 70 |  | simplr |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> M e. ( MaxIdeal ` R ) ) | 
						
							| 71 |  | simprl |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> j e. ( PrmIdeal ` R ) ) | 
						
							| 72 |  | prmidlidl |  |-  ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) | 
						
							| 73 | 69 71 72 | syl2anc |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> j e. ( LIdeal ` R ) ) | 
						
							| 74 |  | simprr |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> M C_ j ) | 
						
							| 75 | 73 74 | jca |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> ( j e. ( LIdeal ` R ) /\ M C_ j ) ) | 
						
							| 76 | 11 | mxidlmax |  |-  ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( LIdeal ` R ) /\ M C_ j ) ) -> ( j = M \/ j = ( Base ` R ) ) ) | 
						
							| 77 | 69 70 75 76 | syl21anc |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> ( j = M \/ j = ( Base ` R ) ) ) | 
						
							| 78 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 79 | 11 78 | prmidlnr |  |-  ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j =/= ( Base ` R ) ) | 
						
							| 80 | 69 71 79 | syl2anc |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> j =/= ( Base ` R ) ) | 
						
							| 81 | 80 | neneqd |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> -. j = ( Base ` R ) ) | 
						
							| 82 | 77 81 | olcnd |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) -> j = M ) | 
						
							| 83 |  | simpr |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> j = M ) | 
						
							| 84 | 19 | mxidlprm |  |-  ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> M e. ( PrmIdeal ` R ) ) | 
						
							| 85 | 84 | adantr |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> M e. ( PrmIdeal ` R ) ) | 
						
							| 86 | 83 85 | eqeltrd |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> j e. ( PrmIdeal ` R ) ) | 
						
							| 87 |  | ssidd |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> j C_ j ) | 
						
							| 88 | 83 87 | eqsstrrd |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> M C_ j ) | 
						
							| 89 | 86 88 | jca |  |-  ( ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) /\ j = M ) -> ( j e. ( PrmIdeal ` R ) /\ M C_ j ) ) | 
						
							| 90 | 82 89 | impbida |  |-  ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) ) | 
						
							| 91 | 90 | alrimiv |  |-  ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> A. j ( ( j e. ( PrmIdeal ` R ) /\ M C_ j ) <-> j = M ) ) | 
						
							| 92 | 91 33 | sylibr |  |-  ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> { j e. ( PrmIdeal ` R ) | M C_ j } = { M } ) | 
						
							| 93 | 68 92 | eqtr2d |  |-  ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) -> { M } = ( V ` M ) ) | 
						
							| 94 | 93 | adantlr |  |-  ( ( ( R e. CRing /\ M e. B ) /\ M e. ( MaxIdeal ` R ) ) -> { M } = ( V ` M ) ) | 
						
							| 95 | 62 94 | impbida |  |-  ( ( R e. CRing /\ M e. B ) -> ( { M } = ( V ` M ) <-> M e. ( MaxIdeal ` R ) ) ) |