Metamath Proof Explorer


Theorem zarclsint

Description: The intersection of a family of closed sets is closed in the Zariski topology. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypothesis zarclsx.1 No typesetting found for |- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
Assertion zarclsint RCRingSranVSSranV

Proof

Step Hyp Ref Expression
1 zarclsx.1 Could not format V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) : No typesetting found for |- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
2 crngring RCRingRRing
3 2 ad4antr RCRingSranVSr𝒫LIdealRS=VrRRing
4 elpwi r𝒫LIdealRrLIdealR
5 4 adantl RCRingSranVSr𝒫LIdealRrLIdealR
6 5 adantr RCRingSranVSr𝒫LIdealRS=VrrLIdealR
7 6 sselda RCRingSranVSr𝒫LIdealRS=VririLIdealR
8 eqid BaseR=BaseR
9 eqid LIdealR=LIdealR
10 8 9 lidlss iLIdealRiBaseR
11 7 10 syl RCRingSranVSr𝒫LIdealRS=VririBaseR
12 11 ralrimiva RCRingSranVSr𝒫LIdealRS=VririBaseR
13 unissb rBaseRiriBaseR
14 12 13 sylibr RCRingSranVSr𝒫LIdealRS=VrrBaseR
15 eqid RSpanR=RSpanR
16 15 8 9 rspcl RRingrBaseRRSpanRrLIdealR
17 3 14 16 syl2anc RCRingSranVSr𝒫LIdealRS=VrRSpanRrLIdealR
18 sseq1 i=RSpanRrijRSpanRrj
19 18 rabbidv Could not format ( i = ( ( RSpan ` R ) ` U. r ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) : No typesetting found for |- ( i = ( ( RSpan ` R ) ` U. r ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) with typecode |-
20 19 eqeq2d Could not format ( i = ( ( RSpan ` R ) ` U. r ) -> ( |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } <-> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) ) : No typesetting found for |- ( i = ( ( RSpan ` R ) ` U. r ) -> ( |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } <-> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) ) with typecode |-
21 20 adantl Could not format ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i = ( ( RSpan ` R ) ` U. r ) ) -> ( |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } <-> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) ) : No typesetting found for |- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i = ( ( RSpan ` R ) ` U. r ) ) -> ( |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } <-> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) ) with typecode |-
22 simpr RCRingSranVSr𝒫LIdealRS=VrS=Vr
23 22 inteqd RCRingSranVSr𝒫LIdealRS=VrS=Vr
24 1 funmpt2 FunV
25 24 a1i RCRingSranVSr𝒫LIdealRS=VrFunV
26 fvex Could not format ( PrmIdeal ` R ) e. _V : No typesetting found for |- ( PrmIdeal ` R ) e. _V with typecode |-
27 26 rabex Could not format { j e. ( PrmIdeal ` R ) | i C_ j } e. _V : No typesetting found for |- { j e. ( PrmIdeal ` R ) | i C_ j } e. _V with typecode |-
28 27 1 dmmpti domV=LIdealR
29 6 28 sseqtrrdi RCRingSranVSr𝒫LIdealRS=VrrdomV
30 intimafv FunVrdomVVr=lrVl
31 25 29 30 syl2anc RCRingSranVSr𝒫LIdealRS=VrVr=lrVl
32 23 31 eqtrd RCRingSranVSr𝒫LIdealRS=VrS=lrVl
33 simplr RCRingSranVSr𝒫LIdealRS=Vrr=S=Vr
34 simpr RCRingSranVSr𝒫LIdealRS=Vrr=r=
35 34 imaeq2d RCRingSranVSr𝒫LIdealRS=Vrr=Vr=V
36 ima0 V=
37 35 36 eqtrdi RCRingSranVSr𝒫LIdealRS=Vrr=Vr=
38 33 37 eqtrd RCRingSranVSr𝒫LIdealRS=Vrr=S=
39 simp-4r RCRingSranVSr𝒫LIdealRS=Vrr=S
40 39 neneqd RCRingSranVSr𝒫LIdealRS=Vrr=¬S=
41 38 40 pm2.65da RCRingSranVSr𝒫LIdealRS=Vr¬r=
42 41 neqned RCRingSranVSr𝒫LIdealRS=Vrr
43 1 15 zarclsiin RRingrLIdealRrlrVl=VRSpanRr
44 3 6 42 43 syl3anc RCRingSranVSr𝒫LIdealRS=VrlrVl=VRSpanRr
45 1 a1i Could not format ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) : No typesetting found for |- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) with typecode |-
46 19 adantl Could not format ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i = ( ( RSpan ` R ) ` U. r ) ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) : No typesetting found for |- ( ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) /\ i = ( ( RSpan ` R ) ` U. r ) ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) with typecode |-
47 26 rabex Could not format { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } e. _V : No typesetting found for |- { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } e. _V with typecode |-
48 47 a1i Could not format ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } e. _V ) : No typesetting found for |- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } e. _V ) with typecode |-
49 45 46 17 48 fvmptd Could not format ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( V ` ( ( RSpan ` R ) ` U. r ) ) = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) : No typesetting found for |- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( V ` ( ( RSpan ` R ) ` U. r ) ) = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) with typecode |-
50 32 44 49 3eqtrd Could not format ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) : No typesetting found for |- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> |^| S = { j e. ( PrmIdeal ` R ) | ( ( RSpan ` R ) ` U. r ) C_ j } ) with typecode |-
51 17 21 50 rspcedvd Could not format ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) : No typesetting found for |- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
52 intex SSV
53 52 biimpi SSV
54 53 3ad2ant3 RCRingSranVSSV
55 1 elrnmpt Could not format ( |^| S e. _V -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) : No typesetting found for |- ( |^| S e. _V -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) with typecode |-
56 54 55 syl Could not format ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) : No typesetting found for |- ( ( R e. CRing /\ S C_ ran V /\ S =/= (/) ) -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) with typecode |-
57 56 ad5ant123 Could not format ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) : No typesetting found for |- ( ( ( ( ( R e. CRing /\ S C_ ran V ) /\ S =/= (/) ) /\ r e. ~P ( LIdeal ` R ) ) /\ S = ( V " r ) ) -> ( |^| S e. ran V <-> E. i e. ( LIdeal ` R ) |^| S = { j e. ( PrmIdeal ` R ) | i C_ j } ) ) with typecode |-
58 51 57 mpbird RCRingSranVSr𝒫LIdealRS=VrSranV
59 fvexd RCRingSranVSLIdealRV
60 24 a1i RCRingSranVSFunV
61 simplr RCRingSranVSSranV
62 27 1 fnmpti VFnLIdealR
63 fnima VFnLIdealRVLIdealR=ranV
64 62 63 ax-mp VLIdealR=ranV
65 61 64 sseqtrrdi RCRingSranVSSVLIdealR
66 ssimaexg LIdealRVFunVSVLIdealRrrLIdealRS=Vr
67 59 60 65 66 syl3anc RCRingSranVSrrLIdealRS=Vr
68 vex rV
69 68 a1i RCRingSranVSrLIdealRrV
70 simpr RCRingSranVSrLIdealRrLIdealR
71 69 70 elpwd RCRingSranVSrLIdealRr𝒫LIdealR
72 71 ex RCRingSranVSrLIdealRr𝒫LIdealR
73 72 anim1d RCRingSranVSrLIdealRS=Vrr𝒫LIdealRS=Vr
74 73 eximdv RCRingSranVSrrLIdealRS=Vrrr𝒫LIdealRS=Vr
75 67 74 mpd RCRingSranVSrr𝒫LIdealRS=Vr
76 df-rex r𝒫LIdealRS=Vrrr𝒫LIdealRS=Vr
77 75 76 sylibr RCRingSranVSr𝒫LIdealRS=Vr
78 58 77 r19.29a RCRingSranVSSranV
79 78 3impa RCRingSranVSSranV