Metamath Proof Explorer


Theorem ssimaexg

Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007)

Ref Expression
Assertion ssimaexg ACFunFBFAxxAB=Fx

Proof

Step Hyp Ref Expression
1 imaeq2 y=AFy=FA
2 1 sseq2d y=ABFyBFA
3 2 anbi2d y=AFunFBFyFunFBFA
4 sseq2 y=AxyxA
5 4 anbi1d y=AxyB=FxxAB=Fx
6 5 exbidv y=AxxyB=FxxxAB=Fx
7 3 6 imbi12d y=AFunFBFyxxyB=FxFunFBFAxxAB=Fx
8 vex yV
9 8 ssimaex FunFBFyxxyB=Fx
10 7 9 vtoclg ACFunFBFAxxAB=Fx
11 10 3impib ACFunFBFAxxAB=Fx