Step |
Hyp |
Ref |
Expression |
1 |
|
zartop.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
2 |
|
zartop.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) |
3 |
|
zarcls.1 |
⊢ 𝑃 = ( PrmIdeal ‘ 𝑅 ) |
4 |
|
zarcls.2 |
⊢ 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) |
5 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
7 |
1 5 3 6
|
rspectopn |
⊢ ( 𝑅 ∈ Ring → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( TopOpen ‘ 𝑆 ) ) |
8 |
2 7
|
eqtr4id |
⊢ ( 𝑅 ∈ Ring → 𝐽 = ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
9 |
|
nfv |
⊢ Ⅎ 𝑠 𝑅 ∈ Ring |
10 |
|
nfcv |
⊢ Ⅎ 𝑠 ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
11 |
|
nfrab1 |
⊢ Ⅎ 𝑠 { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } |
12 |
|
notrab |
⊢ ( 𝑃 ∖ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } |
13 |
12
|
eqeq2i |
⊢ ( 𝑠 = ( 𝑃 ∖ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ↔ 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
14 |
|
ssrab2 |
⊢ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 |
15 |
14
|
a1i |
⊢ ( 𝑠 ∈ 𝒫 𝑃 → { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 ) |
16 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑃 → 𝑠 ⊆ 𝑃 ) |
17 |
|
ssdifsym |
⊢ ( ( { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 ∧ 𝑠 ⊆ 𝑃 ) → ( 𝑠 = ( 𝑃 ∖ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ↔ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } = ( 𝑃 ∖ 𝑠 ) ) ) |
18 |
15 16 17
|
syl2anc |
⊢ ( 𝑠 ∈ 𝒫 𝑃 → ( 𝑠 = ( 𝑃 ∖ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ↔ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } = ( 𝑃 ∖ 𝑠 ) ) ) |
19 |
|
eqcom |
⊢ ( { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } = ( 𝑃 ∖ 𝑠 ) ↔ ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) |
20 |
18 19
|
bitrdi |
⊢ ( 𝑠 ∈ 𝒫 𝑃 → ( 𝑠 = ( 𝑃 ∖ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ↔ ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ) |
21 |
13 20
|
bitr3id |
⊢ ( 𝑠 ∈ 𝒫 𝑃 → ( 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ↔ ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ↔ ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ) |
23 |
22
|
rexbidva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃 ) → ( ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ) |
24 |
3
|
fvexi |
⊢ 𝑃 ∈ V |
25 |
24
|
rabex |
⊢ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ∈ V |
26 |
4 25
|
elrnmpti |
⊢ ( ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) |
27 |
23 26
|
bitr4di |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃 ) → ( ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ↔ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 ) ) |
28 |
27
|
pm5.32da |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑠 ∈ 𝒫 𝑃 ∧ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ( 𝑠 ∈ 𝒫 𝑃 ∧ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 ) ) ) |
29 |
|
ssrab2 |
⊢ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 |
30 |
24
|
elpw2 |
⊢ ( { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 ↔ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 ) |
31 |
29 30
|
mpbir |
⊢ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 |
32 |
31
|
rgenw |
⊢ ∀ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 |
33 |
|
eqid |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
34 |
33
|
rnmptss |
⊢ ( ∀ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ⊆ 𝒫 𝑃 ) |
35 |
32 34
|
ax-mp |
⊢ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ⊆ 𝒫 𝑃 |
36 |
35
|
sseli |
⊢ ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) → 𝑠 ∈ 𝒫 𝑃 ) |
37 |
36
|
pm4.71ri |
⊢ ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ( 𝑠 ∈ 𝒫 𝑃 ∧ 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) ) |
38 |
|
vex |
⊢ 𝑠 ∈ V |
39 |
33
|
elrnmpt |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
40 |
38 39
|
ax-mp |
⊢ ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
41 |
40
|
anbi2i |
⊢ ( ( 𝑠 ∈ 𝒫 𝑃 ∧ 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) ↔ ( 𝑠 ∈ 𝒫 𝑃 ∧ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
42 |
37 41
|
bitri |
⊢ ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ( 𝑠 ∈ 𝒫 𝑃 ∧ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
43 |
|
rabid |
⊢ ( 𝑠 ∈ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ↔ ( 𝑠 ∈ 𝒫 𝑃 ∧ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 ) ) |
44 |
28 42 43
|
3bitr4g |
⊢ ( 𝑅 ∈ Ring → ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ 𝑠 ∈ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) ) |
45 |
9 10 11 44
|
eqrd |
⊢ ( 𝑅 ∈ Ring → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) |
46 |
8 45
|
eqtrd |
⊢ ( 𝑅 ∈ Ring → 𝐽 = { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) |