| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zartop.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
| 2 |
|
zartop.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝑆 ) |
| 3 |
|
zarcls.1 |
⊢ 𝑃 = ( PrmIdeal ‘ 𝑅 ) |
| 4 |
|
zarcls.2 |
⊢ 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) |
| 5 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
| 7 |
1 5 3 6
|
rspectopn |
⊢ ( 𝑅 ∈ Ring → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( TopOpen ‘ 𝑆 ) ) |
| 8 |
2 7
|
eqtr4id |
⊢ ( 𝑅 ∈ Ring → 𝐽 = ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑠 𝑅 ∈ Ring |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑠 ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
| 11 |
|
nfrab1 |
⊢ Ⅎ 𝑠 { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } |
| 12 |
|
notrab |
⊢ ( 𝑃 ∖ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } |
| 13 |
12
|
eqeq2i |
⊢ ( 𝑠 = ( 𝑃 ∖ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ↔ 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
| 14 |
|
ssrab2 |
⊢ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 |
| 15 |
14
|
a1i |
⊢ ( 𝑠 ∈ 𝒫 𝑃 → { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 ) |
| 16 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑃 → 𝑠 ⊆ 𝑃 ) |
| 17 |
|
ssdifsym |
⊢ ( ( { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 ∧ 𝑠 ⊆ 𝑃 ) → ( 𝑠 = ( 𝑃 ∖ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ↔ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } = ( 𝑃 ∖ 𝑠 ) ) ) |
| 18 |
15 16 17
|
syl2anc |
⊢ ( 𝑠 ∈ 𝒫 𝑃 → ( 𝑠 = ( 𝑃 ∖ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ↔ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } = ( 𝑃 ∖ 𝑠 ) ) ) |
| 19 |
|
eqcom |
⊢ ( { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } = ( 𝑃 ∖ 𝑠 ) ↔ ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) |
| 20 |
18 19
|
bitrdi |
⊢ ( 𝑠 ∈ 𝒫 𝑃 → ( 𝑠 = ( 𝑃 ∖ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ↔ ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ) |
| 21 |
13 20
|
bitr3id |
⊢ ( 𝑠 ∈ 𝒫 𝑃 → ( 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ↔ ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ) |
| 22 |
21
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ↔ ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ) |
| 23 |
22
|
rexbidva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃 ) → ( ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) ) |
| 24 |
3
|
fvexi |
⊢ 𝑃 ∈ V |
| 25 |
24
|
rabex |
⊢ { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ∈ V |
| 26 |
4 25
|
elrnmpti |
⊢ ( ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑃 ∖ 𝑠 ) = { 𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗 } ) |
| 27 |
23 26
|
bitr4di |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃 ) → ( ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ↔ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 ) ) |
| 28 |
27
|
pm5.32da |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑠 ∈ 𝒫 𝑃 ∧ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ( 𝑠 ∈ 𝒫 𝑃 ∧ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 ) ) ) |
| 29 |
|
ssrab2 |
⊢ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 |
| 30 |
24
|
elpw2 |
⊢ ( { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 ↔ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ⊆ 𝑃 ) |
| 31 |
29 30
|
mpbir |
⊢ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 |
| 32 |
31
|
rgenw |
⊢ ∀ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 |
| 33 |
|
eqid |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
| 34 |
33
|
rnmptss |
⊢ ( ∀ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 𝑃 → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ⊆ 𝒫 𝑃 ) |
| 35 |
32 34
|
ax-mp |
⊢ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ⊆ 𝒫 𝑃 |
| 36 |
35
|
sseli |
⊢ ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) → 𝑠 ∈ 𝒫 𝑃 ) |
| 37 |
36
|
pm4.71ri |
⊢ ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ( 𝑠 ∈ 𝒫 𝑃 ∧ 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) ) |
| 38 |
|
vex |
⊢ 𝑠 ∈ V |
| 39 |
33
|
elrnmpt |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
| 40 |
38 39
|
ax-mp |
⊢ ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
| 41 |
40
|
anbi2i |
⊢ ( ( 𝑠 ∈ 𝒫 𝑃 ∧ 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) ↔ ( 𝑠 ∈ 𝒫 𝑃 ∧ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
| 42 |
37 41
|
bitri |
⊢ ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ( 𝑠 ∈ 𝒫 𝑃 ∧ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑠 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
| 43 |
|
rabid |
⊢ ( 𝑠 ∈ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ↔ ( 𝑠 ∈ 𝒫 𝑃 ∧ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 ) ) |
| 44 |
28 42 43
|
3bitr4g |
⊢ ( 𝑅 ∈ Ring → ( 𝑠 ∈ ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ 𝑠 ∈ { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) ) |
| 45 |
9 10 11 44
|
eqrd |
⊢ ( 𝑅 ∈ Ring → ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) |
| 46 |
8 45
|
eqtrd |
⊢ ( 𝑅 ∈ Ring → 𝐽 = { 𝑠 ∈ 𝒫 𝑃 ∣ ( 𝑃 ∖ 𝑠 ) ∈ ran 𝑉 } ) |