| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zartop.1 | ⊢ 𝑆  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | zartop.2 | ⊢ 𝐽  =  ( TopOpen ‘ 𝑆 ) | 
						
							| 3 |  | zarcls.1 | ⊢ 𝑃  =  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 4 |  | zarcls.2 | ⊢ 𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 5 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 7 | 1 5 3 6 | rspectopn | ⊢ ( 𝑅  ∈  Ring  →  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( TopOpen ‘ 𝑆 ) ) | 
						
							| 8 | 2 7 | eqtr4id | ⊢ ( 𝑅  ∈  Ring  →  𝐽  =  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑠 𝑅  ∈  Ring | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑠 ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 11 |  | nfrab1 | ⊢ Ⅎ 𝑠 { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } | 
						
							| 12 |  | notrab | ⊢ ( 𝑃  ∖  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } )  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } | 
						
							| 13 | 12 | eqeq2i | ⊢ ( 𝑠  =  ( 𝑃  ∖  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } )  ↔  𝑠  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 14 |  | ssrab2 | ⊢ { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ⊆  𝑃 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑠  ∈  𝒫  𝑃  →  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ⊆  𝑃 ) | 
						
							| 16 |  | elpwi | ⊢ ( 𝑠  ∈  𝒫  𝑃  →  𝑠  ⊆  𝑃 ) | 
						
							| 17 |  | ssdifsym | ⊢ ( ( { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ⊆  𝑃  ∧  𝑠  ⊆  𝑃 )  →  ( 𝑠  =  ( 𝑃  ∖  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } )  ↔  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  =  ( 𝑃  ∖  𝑠 ) ) ) | 
						
							| 18 | 15 16 17 | syl2anc | ⊢ ( 𝑠  ∈  𝒫  𝑃  →  ( 𝑠  =  ( 𝑃  ∖  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } )  ↔  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  =  ( 𝑃  ∖  𝑠 ) ) ) | 
						
							| 19 |  | eqcom | ⊢ ( { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  =  ( 𝑃  ∖  𝑠 )  ↔  ( 𝑃  ∖  𝑠 )  =  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 20 | 18 19 | bitrdi | ⊢ ( 𝑠  ∈  𝒫  𝑃  →  ( 𝑠  =  ( 𝑃  ∖  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } )  ↔  ( 𝑃  ∖  𝑠 )  =  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 21 | 13 20 | bitr3id | ⊢ ( 𝑠  ∈  𝒫  𝑃  →  ( 𝑠  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ↔  ( 𝑃  ∖  𝑠 )  =  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑠  ∈  𝒫  𝑃 )  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝑠  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ↔  ( 𝑃  ∖  𝑠 )  =  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 23 | 22 | rexbidva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑠  ∈  𝒫  𝑃 )  →  ( ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑠  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ↔  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) ( 𝑃  ∖  𝑠 )  =  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 24 | 3 | fvexi | ⊢ 𝑃  ∈  V | 
						
							| 25 | 24 | rabex | ⊢ { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 }  ∈  V | 
						
							| 26 | 4 25 | elrnmpti | ⊢ ( ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉  ↔  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) ( 𝑃  ∖  𝑠 )  =  { 𝑗  ∈  𝑃  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 27 | 23 26 | bitr4di | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑠  ∈  𝒫  𝑃 )  →  ( ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑠  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ↔  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 ) ) | 
						
							| 28 | 27 | pm5.32da | ⊢ ( 𝑅  ∈  Ring  →  ( ( 𝑠  ∈  𝒫  𝑃  ∧  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑠  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  ↔  ( 𝑠  ∈  𝒫  𝑃  ∧  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 ) ) ) | 
						
							| 29 |  | ssrab2 | ⊢ { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ⊆  𝑃 | 
						
							| 30 | 24 | elpw2 | ⊢ ( { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  𝒫  𝑃  ↔  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ⊆  𝑃 ) | 
						
							| 31 | 29 30 | mpbir | ⊢ { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  𝒫  𝑃 | 
						
							| 32 | 31 | rgenw | ⊢ ∀ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  𝒫  𝑃 | 
						
							| 33 |  | eqid | ⊢ ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 34 | 33 | rnmptss | ⊢ ( ∀ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  𝒫  𝑃  →  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  ⊆  𝒫  𝑃 ) | 
						
							| 35 | 32 34 | ax-mp | ⊢ ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  ⊆  𝒫  𝑃 | 
						
							| 36 | 35 | sseli | ⊢ ( 𝑠  ∈  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  →  𝑠  ∈  𝒫  𝑃 ) | 
						
							| 37 | 36 | pm4.71ri | ⊢ ( 𝑠  ∈  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  ↔  ( 𝑠  ∈  𝒫  𝑃  ∧  𝑠  ∈  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) ) ) | 
						
							| 38 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 39 | 33 | elrnmpt | ⊢ ( 𝑠  ∈  V  →  ( 𝑠  ∈  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  ↔  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑠  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) ) | 
						
							| 40 | 38 39 | ax-mp | ⊢ ( 𝑠  ∈  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  ↔  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑠  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 41 | 40 | anbi2i | ⊢ ( ( 𝑠  ∈  𝒫  𝑃  ∧  𝑠  ∈  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) )  ↔  ( 𝑠  ∈  𝒫  𝑃  ∧  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑠  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) ) | 
						
							| 42 | 37 41 | bitri | ⊢ ( 𝑠  ∈  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  ↔  ( 𝑠  ∈  𝒫  𝑃  ∧  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑠  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) ) | 
						
							| 43 |  | rabid | ⊢ ( 𝑠  ∈  { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 }  ↔  ( 𝑠  ∈  𝒫  𝑃  ∧  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 ) ) | 
						
							| 44 | 28 42 43 | 3bitr4g | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑠  ∈  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  ↔  𝑠  ∈  { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } ) ) | 
						
							| 45 | 9 10 11 44 | eqrd | ⊢ ( 𝑅  ∈  Ring  →  ran  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  =  { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } ) | 
						
							| 46 | 8 45 | eqtrd | ⊢ ( 𝑅  ∈  Ring  →  𝐽  =  { 𝑠  ∈  𝒫  𝑃  ∣  ( 𝑃  ∖  𝑠 )  ∈  ran  𝑉 } ) |