Metamath Proof Explorer


Theorem mretopd

Description: A Moore collection which is closed under finite unions called topological; such a collection is the closed sets of a canonically associated topology. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses mretopd.m φ M Moore B
mretopd.z φ M
mretopd.u φ x M y M x y M
mretopd.j J = z 𝒫 B | B z M
Assertion mretopd φ J TopOn B M = Clsd J

Proof

Step Hyp Ref Expression
1 mretopd.m φ M Moore B
2 mretopd.z φ M
3 mretopd.u φ x M y M x y M
4 mretopd.j J = z 𝒫 B | B z M
5 unieq a = a =
6 uni0 =
7 5 6 syl6eq a = a =
8 7 eleq1d a = a J J
9 4 ssrab3 J 𝒫 B
10 sstr a J J 𝒫 B a 𝒫 B
11 9 10 mpan2 a J a 𝒫 B
12 11 adantl φ a J a 𝒫 B
13 sspwuni a 𝒫 B a B
14 12 13 sylib φ a J a B
15 vuniex a V
16 15 elpw a 𝒫 B a B
17 14 16 sylibr φ a J a 𝒫 B
18 17 adantr φ a J a a 𝒫 B
19 uniiun a = b a b
20 19 difeq2i B a = B b a b
21 iindif2 a b a B b = B b a b
22 21 adantl φ a J a b a B b = B b a b
23 1 ad2antrr φ a J a M Moore B
24 simpr φ a J a a
25 difeq2 z = b B z = B b
26 25 eleq1d z = b B z M B b M
27 26 4 elrab2 b J b 𝒫 B B b M
28 27 simprbi b J B b M
29 28 rgen b J B b M
30 ssralv a J b J B b M b a B b M
31 30 adantl φ a J b J B b M b a B b M
32 29 31 mpi φ a J b a B b M
33 32 adantr φ a J a b a B b M
34 mreiincl M Moore B a b a B b M b a B b M
35 23 24 33 34 syl3anc φ a J a b a B b M
36 22 35 eqeltrrd φ a J a B b a b M
37 20 36 eqeltrid φ a J a B a M
38 difeq2 z = a B z = B a
39 38 eleq1d z = a B z M B a M
40 39 4 elrab2 a J a 𝒫 B B a M
41 18 37 40 sylanbrc φ a J a a J
42 0elpw 𝒫 B
43 42 a1i φ 𝒫 B
44 mre1cl M Moore B B M
45 1 44 syl φ B M
46 difeq2 z = B z = B
47 dif0 B = B
48 46 47 syl6eq z = B z = B
49 48 eleq1d z = B z M B M
50 49 4 elrab2 J 𝒫 B B M
51 43 45 50 sylanbrc φ J
52 51 adantr φ a J J
53 8 41 52 pm2.61ne φ a J a J
54 53 ex φ a J a J
55 54 alrimiv φ a a J a J
56 inss1 a b a
57 difeq2 z = a B z = B a
58 57 eleq1d z = a B z M B a M
59 58 4 elrab2 a J a 𝒫 B B a M
60 59 simplbi a J a 𝒫 B
61 60 elpwid a J a B
62 61 ad2antrl φ a J b J a B
63 56 62 sstrid φ a J b J a b B
64 vex a V
65 64 inex1 a b V
66 65 elpw a b 𝒫 B a b B
67 63 66 sylibr φ a J b J a b 𝒫 B
68 difindi B a b = B a B b
69 59 simprbi a J B a M
70 69 ad2antrl φ a J b J B a M
71 28 ad2antll φ a J b J B b M
72 simpl φ a J b J φ
73 uneq1 x = B a x y = B a y
74 73 eleq1d x = B a x y M B a y M
75 74 imbi2d x = B a φ x y M φ B a y M
76 uneq2 y = B b B a y = B a B b
77 76 eleq1d y = B b B a y M B a B b M
78 77 imbi2d y = B b φ B a y M φ B a B b M
79 3 3expb φ x M y M x y M
80 79 expcom x M y M φ x y M
81 75 78 80 vtocl2ga B a M B b M φ B a B b M
82 81 imp B a M B b M φ B a B b M
83 70 71 72 82 syl21anc φ a J b J B a B b M
84 68 83 eqeltrid φ a J b J B a b M
85 difeq2 z = a b B z = B a b
86 85 eleq1d z = a b B z M B a b M
87 86 4 elrab2 a b J a b 𝒫 B B a b M
88 67 84 87 sylanbrc φ a J b J a b J
89 88 ralrimivva φ a J b J a b J
90 45 pwexd φ 𝒫 B V
91 4 90 rabexd φ J V
92 istopg J V J Top a a J a J a J b J a b J
93 91 92 syl φ J Top a a J a J a J b J a b J
94 55 89 93 mpbir2and φ J Top
95 9 unissi J 𝒫 B
96 unipw 𝒫 B = B
97 95 96 sseqtri J B
98 pwidg B M B 𝒫 B
99 45 98 syl φ B 𝒫 B
100 difid B B =
101 100 2 eqeltrid φ B B M
102 difeq2 z = B B z = B B
103 102 eleq1d z = B B z M B B M
104 103 4 elrab2 B J B 𝒫 B B B M
105 99 101 104 sylanbrc φ B J
106 unissel J B B J J = B
107 97 105 106 sylancr φ J = B
108 107 eqcomd φ B = J
109 istopon J TopOn B J Top B = J
110 94 108 109 sylanbrc φ J TopOn B
111 eqid J = J
112 111 cldval J Top Clsd J = x 𝒫 J | J x J
113 94 112 syl φ Clsd J = x 𝒫 J | J x J
114 107 pweqd φ 𝒫 J = 𝒫 B
115 107 difeq1d φ J x = B x
116 115 eleq1d φ J x J B x J
117 114 116 rabeqbidv φ x 𝒫 J | J x J = x 𝒫 B | B x J
118 4 eleq2i B x J B x z 𝒫 B | B z M
119 difss B x B
120 elpw2g B M B x 𝒫 B B x B
121 45 120 syl φ B x 𝒫 B B x B
122 119 121 mpbiri φ B x 𝒫 B
123 difeq2 z = B x B z = B B x
124 123 eleq1d z = B x B z M B B x M
125 124 elrab3 B x 𝒫 B B x z 𝒫 B | B z M B B x M
126 122 125 syl φ B x z 𝒫 B | B z M B B x M
127 126 adantr φ x 𝒫 B B x z 𝒫 B | B z M B B x M
128 118 127 syl5bb φ x 𝒫 B B x J B B x M
129 elpwi x 𝒫 B x B
130 dfss4 x B B B x = x
131 129 130 sylib x 𝒫 B B B x = x
132 131 adantl φ x 𝒫 B B B x = x
133 132 eleq1d φ x 𝒫 B B B x M x M
134 128 133 bitrd φ x 𝒫 B B x J x M
135 134 rabbidva φ x 𝒫 B | B x J = x 𝒫 B | x M
136 incom M 𝒫 B = 𝒫 B M
137 dfin5 𝒫 B M = x 𝒫 B | x M
138 136 137 eqtri M 𝒫 B = x 𝒫 B | x M
139 mresspw M Moore B M 𝒫 B
140 1 139 syl φ M 𝒫 B
141 df-ss M 𝒫 B M 𝒫 B = M
142 140 141 sylib φ M 𝒫 B = M
143 138 142 syl5eqr φ x 𝒫 B | x M = M
144 135 143 eqtrd φ x 𝒫 B | B x J = M
145 113 117 144 3eqtrrd φ M = Clsd J
146 110 145 jca φ J TopOn B M = Clsd J