| Step |
Hyp |
Ref |
Expression |
| 1 |
|
toponsspwpw |
|
| 2 |
1
|
a1i |
|
| 3 |
|
distopon |
|
| 4 |
|
simpl |
|
| 5 |
4
|
sselda |
|
| 6 |
5
|
adantrl |
|
| 7 |
|
topontop |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
simpl |
|
| 10 |
|
intss1 |
|
| 11 |
10
|
adantl |
|
| 12 |
9 11
|
sstrd |
|
| 13 |
12
|
adantl |
|
| 14 |
|
uniopn |
|
| 15 |
8 13 14
|
syl2anc |
|
| 16 |
15
|
expr |
|
| 17 |
16
|
ralrimiv |
|
| 18 |
|
vuniex |
|
| 19 |
18
|
elint2 |
|
| 20 |
17 19
|
sylibr |
|
| 21 |
20
|
ex |
|
| 22 |
21
|
alrimiv |
|
| 23 |
|
simpll |
|
| 24 |
23
|
sselda |
|
| 25 |
|
topontop |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
intss1 |
|
| 28 |
27
|
adantl |
|
| 29 |
|
simplrl |
|
| 30 |
28 29
|
sseldd |
|
| 31 |
|
simplrr |
|
| 32 |
28 31
|
sseldd |
|
| 33 |
|
inopn |
|
| 34 |
26 30 32 33
|
syl3anc |
|
| 35 |
34
|
ralrimiva |
|
| 36 |
|
vex |
|
| 37 |
36
|
inex1 |
|
| 38 |
37
|
elint2 |
|
| 39 |
35 38
|
sylibr |
|
| 40 |
39
|
ralrimivva |
|
| 41 |
|
intex |
|
| 42 |
41
|
biimpi |
|
| 43 |
42
|
adantl |
|
| 44 |
|
istopg |
|
| 45 |
43 44
|
syl |
|
| 46 |
22 40 45
|
mpbir2and |
|
| 47 |
46
|
3adant1 |
|
| 48 |
|
n0 |
|
| 49 |
48
|
biimpi |
|
| 50 |
49
|
ad2antlr |
|
| 51 |
10
|
sselda |
|
| 52 |
51
|
ancoms |
|
| 53 |
|
elssuni |
|
| 54 |
52 53
|
syl |
|
| 55 |
54
|
adantl |
|
| 56 |
5
|
adantrl |
|
| 57 |
|
toponuni |
|
| 58 |
56 57
|
syl |
|
| 59 |
55 58
|
sseqtrrd |
|
| 60 |
59
|
expr |
|
| 61 |
60
|
exlimdv |
|
| 62 |
50 61
|
mpd |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
|
unissb |
|
| 65 |
63 64
|
sylibr |
|
| 66 |
65
|
3adant1 |
|
| 67 |
4
|
sselda |
|
| 68 |
|
toponuni |
|
| 69 |
67 68
|
syl |
|
| 70 |
|
topontop |
|
| 71 |
|
eqid |
|
| 72 |
71
|
topopn |
|
| 73 |
67 70 72
|
3syl |
|
| 74 |
69 73
|
eqeltrd |
|
| 75 |
74
|
ralrimiva |
|
| 76 |
75
|
3adant1 |
|
| 77 |
|
elintg |
|
| 78 |
77
|
3ad2ant1 |
|
| 79 |
76 78
|
mpbird |
|
| 80 |
|
unissel |
|
| 81 |
66 79 80
|
syl2anc |
|
| 82 |
81
|
eqcomd |
|
| 83 |
|
istopon |
|
| 84 |
47 82 83
|
sylanbrc |
|
| 85 |
2 3 84
|
ismred |
|