| Step |
Hyp |
Ref |
Expression |
| 1 |
|
toponsspwpw |
⊢ ( TopOn ‘ 𝐵 ) ⊆ 𝒫 𝒫 𝐵 |
| 2 |
1
|
a1i |
⊢ ( 𝐵 ∈ 𝑉 → ( TopOn ‘ 𝐵 ) ⊆ 𝒫 𝒫 𝐵 ) |
| 3 |
|
distopon |
⊢ ( 𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ ( TopOn ‘ 𝐵 ) ) |
| 4 |
|
simpl |
⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ) |
| 5 |
4
|
sselda |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( TopOn ‘ 𝐵 ) ) |
| 6 |
5
|
adantrl |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑥 ∈ ( TopOn ‘ 𝐵 ) ) |
| 7 |
|
topontop |
⊢ ( 𝑥 ∈ ( TopOn ‘ 𝐵 ) → 𝑥 ∈ Top ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑥 ∈ Top ) |
| 9 |
|
simpl |
⊢ ( ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) → 𝑐 ⊆ ∩ 𝑏 ) |
| 10 |
|
intss1 |
⊢ ( 𝑥 ∈ 𝑏 → ∩ 𝑏 ⊆ 𝑥 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) → ∩ 𝑏 ⊆ 𝑥 ) |
| 12 |
9 11
|
sstrd |
⊢ ( ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) → 𝑐 ⊆ 𝑥 ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑐 ⊆ 𝑥 ) |
| 14 |
|
uniopn |
⊢ ( ( 𝑥 ∈ Top ∧ 𝑐 ⊆ 𝑥 ) → ∪ 𝑐 ∈ 𝑥 ) |
| 15 |
8 13 14
|
syl2anc |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → ∪ 𝑐 ∈ 𝑥 ) |
| 16 |
15
|
expr |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ⊆ ∩ 𝑏 ) → ( 𝑥 ∈ 𝑏 → ∪ 𝑐 ∈ 𝑥 ) ) |
| 17 |
16
|
ralrimiv |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ⊆ ∩ 𝑏 ) → ∀ 𝑥 ∈ 𝑏 ∪ 𝑐 ∈ 𝑥 ) |
| 18 |
|
vuniex |
⊢ ∪ 𝑐 ∈ V |
| 19 |
18
|
elint2 |
⊢ ( ∪ 𝑐 ∈ ∩ 𝑏 ↔ ∀ 𝑥 ∈ 𝑏 ∪ 𝑐 ∈ 𝑥 ) |
| 20 |
17 19
|
sylibr |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ⊆ ∩ 𝑏 ) → ∪ 𝑐 ∈ ∩ 𝑏 ) |
| 21 |
20
|
ex |
⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ( 𝑐 ⊆ ∩ 𝑏 → ∪ 𝑐 ∈ ∩ 𝑏 ) ) |
| 22 |
21
|
alrimiv |
⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ( 𝑐 ⊆ ∩ 𝑏 → ∪ 𝑐 ∈ ∩ 𝑏 ) ) |
| 23 |
|
simpll |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) → 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ) |
| 24 |
23
|
sselda |
⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑦 ∈ ( TopOn ‘ 𝐵 ) ) |
| 25 |
|
topontop |
⊢ ( 𝑦 ∈ ( TopOn ‘ 𝐵 ) → 𝑦 ∈ Top ) |
| 26 |
24 25
|
syl |
⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑦 ∈ Top ) |
| 27 |
|
intss1 |
⊢ ( 𝑦 ∈ 𝑏 → ∩ 𝑏 ⊆ 𝑦 ) |
| 28 |
27
|
adantl |
⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → ∩ 𝑏 ⊆ 𝑦 ) |
| 29 |
|
simplrl |
⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑐 ∈ ∩ 𝑏 ) |
| 30 |
28 29
|
sseldd |
⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑐 ∈ 𝑦 ) |
| 31 |
|
simplrr |
⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑥 ∈ ∩ 𝑏 ) |
| 32 |
28 31
|
sseldd |
⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑥 ∈ 𝑦 ) |
| 33 |
|
inopn |
⊢ ( ( 𝑦 ∈ Top ∧ 𝑐 ∈ 𝑦 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑐 ∩ 𝑥 ) ∈ 𝑦 ) |
| 34 |
26 30 32 33
|
syl3anc |
⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → ( 𝑐 ∩ 𝑥 ) ∈ 𝑦 ) |
| 35 |
34
|
ralrimiva |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) → ∀ 𝑦 ∈ 𝑏 ( 𝑐 ∩ 𝑥 ) ∈ 𝑦 ) |
| 36 |
|
vex |
⊢ 𝑐 ∈ V |
| 37 |
36
|
inex1 |
⊢ ( 𝑐 ∩ 𝑥 ) ∈ V |
| 38 |
37
|
elint2 |
⊢ ( ( 𝑐 ∩ 𝑥 ) ∈ ∩ 𝑏 ↔ ∀ 𝑦 ∈ 𝑏 ( 𝑐 ∩ 𝑥 ) ∈ 𝑦 ) |
| 39 |
35 38
|
sylibr |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) → ( 𝑐 ∩ 𝑥 ) ∈ ∩ 𝑏 ) |
| 40 |
39
|
ralrimivva |
⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ∈ ∩ 𝑏 ∀ 𝑥 ∈ ∩ 𝑏 ( 𝑐 ∩ 𝑥 ) ∈ ∩ 𝑏 ) |
| 41 |
|
intex |
⊢ ( 𝑏 ≠ ∅ ↔ ∩ 𝑏 ∈ V ) |
| 42 |
41
|
biimpi |
⊢ ( 𝑏 ≠ ∅ → ∩ 𝑏 ∈ V ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ V ) |
| 44 |
|
istopg |
⊢ ( ∩ 𝑏 ∈ V → ( ∩ 𝑏 ∈ Top ↔ ( ∀ 𝑐 ( 𝑐 ⊆ ∩ 𝑏 → ∪ 𝑐 ∈ ∩ 𝑏 ) ∧ ∀ 𝑐 ∈ ∩ 𝑏 ∀ 𝑥 ∈ ∩ 𝑏 ( 𝑐 ∩ 𝑥 ) ∈ ∩ 𝑏 ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ( ∩ 𝑏 ∈ Top ↔ ( ∀ 𝑐 ( 𝑐 ⊆ ∩ 𝑏 → ∪ 𝑐 ∈ ∩ 𝑏 ) ∧ ∀ 𝑐 ∈ ∩ 𝑏 ∀ 𝑥 ∈ ∩ 𝑏 ( 𝑐 ∩ 𝑥 ) ∈ ∩ 𝑏 ) ) ) |
| 46 |
22 40 45
|
mpbir2and |
⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ Top ) |
| 47 |
46
|
3adant1 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ Top ) |
| 48 |
|
n0 |
⊢ ( 𝑏 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑏 ) |
| 49 |
48
|
biimpi |
⊢ ( 𝑏 ≠ ∅ → ∃ 𝑥 𝑥 ∈ 𝑏 ) |
| 50 |
49
|
ad2antlr |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ ∩ 𝑏 ) → ∃ 𝑥 𝑥 ∈ 𝑏 ) |
| 51 |
10
|
sselda |
⊢ ( ( 𝑥 ∈ 𝑏 ∧ 𝑐 ∈ ∩ 𝑏 ) → 𝑐 ∈ 𝑥 ) |
| 52 |
51
|
ancoms |
⊢ ( ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) → 𝑐 ∈ 𝑥 ) |
| 53 |
|
elssuni |
⊢ ( 𝑐 ∈ 𝑥 → 𝑐 ⊆ ∪ 𝑥 ) |
| 54 |
52 53
|
syl |
⊢ ( ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) → 𝑐 ⊆ ∪ 𝑥 ) |
| 55 |
54
|
adantl |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑐 ⊆ ∪ 𝑥 ) |
| 56 |
5
|
adantrl |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑥 ∈ ( TopOn ‘ 𝐵 ) ) |
| 57 |
|
toponuni |
⊢ ( 𝑥 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝑥 ) |
| 58 |
56 57
|
syl |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝐵 = ∪ 𝑥 ) |
| 59 |
55 58
|
sseqtrrd |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑐 ⊆ 𝐵 ) |
| 60 |
59
|
expr |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ ∩ 𝑏 ) → ( 𝑥 ∈ 𝑏 → 𝑐 ⊆ 𝐵 ) ) |
| 61 |
60
|
exlimdv |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ ∩ 𝑏 ) → ( ∃ 𝑥 𝑥 ∈ 𝑏 → 𝑐 ⊆ 𝐵 ) ) |
| 62 |
50 61
|
mpd |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ ∩ 𝑏 ) → 𝑐 ⊆ 𝐵 ) |
| 63 |
62
|
ralrimiva |
⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ∈ ∩ 𝑏 𝑐 ⊆ 𝐵 ) |
| 64 |
|
unissb |
⊢ ( ∪ ∩ 𝑏 ⊆ 𝐵 ↔ ∀ 𝑐 ∈ ∩ 𝑏 𝑐 ⊆ 𝐵 ) |
| 65 |
63 64
|
sylibr |
⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∪ ∩ 𝑏 ⊆ 𝐵 ) |
| 66 |
65
|
3adant1 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∪ ∩ 𝑏 ⊆ 𝐵 ) |
| 67 |
4
|
sselda |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑏 ) → 𝑐 ∈ ( TopOn ‘ 𝐵 ) ) |
| 68 |
|
toponuni |
⊢ ( 𝑐 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝑐 ) |
| 69 |
67 68
|
syl |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑏 ) → 𝐵 = ∪ 𝑐 ) |
| 70 |
|
topontop |
⊢ ( 𝑐 ∈ ( TopOn ‘ 𝐵 ) → 𝑐 ∈ Top ) |
| 71 |
|
eqid |
⊢ ∪ 𝑐 = ∪ 𝑐 |
| 72 |
71
|
topopn |
⊢ ( 𝑐 ∈ Top → ∪ 𝑐 ∈ 𝑐 ) |
| 73 |
67 70 72
|
3syl |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑏 ) → ∪ 𝑐 ∈ 𝑐 ) |
| 74 |
69 73
|
eqeltrd |
⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑏 ) → 𝐵 ∈ 𝑐 ) |
| 75 |
74
|
ralrimiva |
⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ∈ 𝑏 𝐵 ∈ 𝑐 ) |
| 76 |
75
|
3adant1 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ∈ 𝑏 𝐵 ∈ 𝑐 ) |
| 77 |
|
elintg |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ∩ 𝑏 ↔ ∀ 𝑐 ∈ 𝑏 𝐵 ∈ 𝑐 ) ) |
| 78 |
77
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ( 𝐵 ∈ ∩ 𝑏 ↔ ∀ 𝑐 ∈ 𝑏 𝐵 ∈ 𝑐 ) ) |
| 79 |
76 78
|
mpbird |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → 𝐵 ∈ ∩ 𝑏 ) |
| 80 |
|
unissel |
⊢ ( ( ∪ ∩ 𝑏 ⊆ 𝐵 ∧ 𝐵 ∈ ∩ 𝑏 ) → ∪ ∩ 𝑏 = 𝐵 ) |
| 81 |
66 79 80
|
syl2anc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∪ ∩ 𝑏 = 𝐵 ) |
| 82 |
81
|
eqcomd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → 𝐵 = ∪ ∩ 𝑏 ) |
| 83 |
|
istopon |
⊢ ( ∩ 𝑏 ∈ ( TopOn ‘ 𝐵 ) ↔ ( ∩ 𝑏 ∈ Top ∧ 𝐵 = ∪ ∩ 𝑏 ) ) |
| 84 |
47 82 83
|
sylanbrc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ ( TopOn ‘ 𝐵 ) ) |
| 85 |
2 3 84
|
ismred |
⊢ ( 𝐵 ∈ 𝑉 → ( TopOn ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |