Metamath Proof Explorer


Theorem intimafv

Description: The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024)

Ref Expression
Assertion intimafv ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐹𝐴 ) = 𝑥𝐴 ( 𝐹𝑥 ) )

Proof

Step Hyp Ref Expression
1 dfimafn ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐹𝐴 ) = { 𝑦 ∣ ∃ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑦 } )
2 1 inteqd ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐹𝐴 ) = { 𝑦 ∣ ∃ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑦 } )
3 fvex ( 𝐹𝑥 ) ∈ V
4 3 rgenw 𝑥𝐴 ( 𝐹𝑥 ) ∈ V
5 iinabrex ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ V → 𝑥𝐴 ( 𝐹𝑥 ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) } )
6 4 5 ax-mp 𝑥𝐴 ( 𝐹𝑥 ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) }
7 eqcom ( ( 𝐹𝑥 ) = 𝑦𝑦 = ( 𝐹𝑥 ) )
8 7 rexbii ( ∃ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑦 ↔ ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) )
9 8 abbii { 𝑦 ∣ ∃ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑦 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) }
10 9 inteqi { 𝑦 ∣ ∃ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑦 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) }
11 6 10 eqtr4i 𝑥𝐴 ( 𝐹𝑥 ) = { 𝑦 ∣ ∃ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑦 }
12 2 11 eqtr4di ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐹𝐴 ) = 𝑥𝐴 ( 𝐹𝑥 ) )