Step |
Hyp |
Ref |
Expression |
1 |
|
dfimafn |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) |
2 |
1
|
inteqd |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ∩ ( 𝐹 “ 𝐴 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) |
3 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
4 |
3
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ V |
5 |
|
iinabrex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ V → ∩ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ) |
6 |
4 5
|
ax-mp |
⊢ ∩ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } |
7 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
8 |
7
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
9 |
8
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } |
10 |
9
|
inteqi |
⊢ ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 } = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } |
11 |
6 10
|
eqtr4i |
⊢ ∩ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 } |
12 |
2 11
|
eqtr4di |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ∩ ( 𝐹 “ 𝐴 ) = ∩ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ) |