Step |
Hyp |
Ref |
Expression |
1 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 |
2 |
|
nfv |
⊢ Ⅎ 𝑥 𝑡 ∈ 𝑧 |
3 |
|
eleq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ 𝐵 ) ) |
4 |
|
vex |
⊢ 𝑧 ∈ V |
5 |
4
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 → 𝑧 ∈ V ) |
6 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑡 ∈ 𝐵 ) |
7 |
1 2 3 5 6
|
elabreximd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) → 𝑡 ∈ 𝑧 ) |
8 |
7
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 → ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) |
9 |
8
|
alrimiv |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 → ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) |
10 |
9
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ) → ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) |
11 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 |
12 |
2
|
nfci |
⊢ Ⅎ 𝑥 𝑧 |
13 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 |
14 |
13
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
15 |
12 14
|
nfel |
⊢ Ⅎ 𝑥 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
16 |
15 2
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) |
17 |
16
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) |
18 |
11 17
|
nfan |
⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) |
19 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
20 |
19
|
elexd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ V ) |
21 |
20
|
adantlr |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ V ) |
22 |
|
simplr |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) |
23 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) |
24 |
|
tbtru |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤ ) ) |
25 |
23 24
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤ ) ) |
26 |
25
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤ ) ) ) |
27 |
26
|
alrimiv |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤ ) ) ) |
28 |
27
|
adantl |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤ ) ) ) |
29 |
|
elabgt |
⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤ ) ) ) → ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ⊤ ) ) |
30 |
|
tbtru |
⊢ ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ⊤ ) ) |
31 |
29 30
|
sylibr |
⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤ ) ) ) → 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
32 |
21 28 31
|
syl2anc |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
33 |
|
eleq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) ) |
34 |
33 3
|
imbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ↔ ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝐵 ) ) ) |
35 |
34
|
spcgv |
⊢ ( 𝐵 ∈ V → ( ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) → ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝐵 ) ) ) |
36 |
35
|
imp |
⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) → ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝐵 ) ) |
37 |
36
|
imp |
⊢ ( ( ( 𝐵 ∈ V ∧ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) ∧ 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) → 𝑡 ∈ 𝐵 ) |
38 |
21 22 32 37
|
syl21anc |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑡 ∈ 𝐵 ) |
39 |
38
|
ex |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) → ( 𝑥 ∈ 𝐴 → 𝑡 ∈ 𝐵 ) ) |
40 |
18 39
|
ralrimi |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) → ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ) |
41 |
10 40
|
impbida |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) ) ) |
42 |
41
|
abbidv |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → { 𝑡 ∣ ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 } = { 𝑡 ∣ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) } ) |
43 |
|
df-iin |
⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = { 𝑡 ∣ ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 } |
44 |
43
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∩ 𝑥 ∈ 𝐴 𝐵 = { 𝑡 ∣ ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 } ) |
45 |
|
df-int |
⊢ ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = { 𝑡 ∣ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) } |
46 |
45
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = { 𝑡 ∣ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑡 ∈ 𝑧 ) } ) |
47 |
42 44 46
|
3eqtr4d |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |