Metamath Proof Explorer


Theorem rspectset

Description: Topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 2-Jun-2024)

Ref Expression
Hypotheses rspecbas.1 S = Spec R
rspectset.1 I = LIdeal R
rspectset.2 J = ran i I j I | ¬ i j
Assertion rspectset R Ring J = TopSet S

Proof

Step Hyp Ref Expression
1 rspecbas.1 S = Spec R
2 rspectset.1 I = LIdeal R
3 rspectset.2 J = ran i I j I | ¬ i j
4 fvex PrmIdeal R V
5 eqid IDLsrg R 𝑠 PrmIdeal R = IDLsrg R 𝑠 PrmIdeal R
6 eqid TopSet IDLsrg R = TopSet IDLsrg R
7 5 6 resstset PrmIdeal R V TopSet IDLsrg R = TopSet IDLsrg R 𝑠 PrmIdeal R
8 4 7 ax-mp TopSet IDLsrg R = TopSet IDLsrg R 𝑠 PrmIdeal R
9 eqid IDLsrg R = IDLsrg R
10 9 2 3 idlsrgtset R Ring J = TopSet IDLsrg R
11 rspecval R Ring Spec R = IDLsrg R 𝑠 PrmIdeal R
12 1 11 eqtrid R Ring S = IDLsrg R 𝑠 PrmIdeal R
13 12 fveq2d R Ring TopSet S = TopSet IDLsrg R 𝑠 PrmIdeal R
14 8 10 13 3eqtr4a R Ring J = TopSet S