| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspecbas.1 | ⊢ 𝑆  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | rspectset.1 | ⊢ 𝐼  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 3 |  | rspectset.2 | ⊢ 𝐽  =  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 4 |  | fvex | ⊢ ( PrmIdeal ‘ 𝑅 )  ∈  V | 
						
							| 5 |  | eqid | ⊢ ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) )  =  ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 6 |  | eqid | ⊢ ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) )  =  ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) | 
						
							| 7 | 5 6 | resstset | ⊢ ( ( PrmIdeal ‘ 𝑅 )  ∈  V  →  ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) )  =  ( TopSet ‘ ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) ) | 
						
							| 8 | 4 7 | ax-mp | ⊢ ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) )  =  ( TopSet ‘ ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( IDLsrg ‘ 𝑅 )  =  ( IDLsrg ‘ 𝑅 ) | 
						
							| 10 | 9 2 3 | idlsrgtset | ⊢ ( 𝑅  ∈  Ring  →  𝐽  =  ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 11 |  | rspecval | ⊢ ( 𝑅  ∈  Ring  →  ( Spec ‘ 𝑅 )  =  ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 12 | 1 11 | eqtrid | ⊢ ( 𝑅  ∈  Ring  →  𝑆  =  ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( TopSet ‘ 𝑆 )  =  ( TopSet ‘ ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) ) | 
						
							| 14 | 8 10 13 | 3eqtr4a | ⊢ ( 𝑅  ∈  Ring  →  𝐽  =  ( TopSet ‘ 𝑆 ) ) |