Metamath Proof Explorer


Theorem rspectset

Description: Topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 2-Jun-2024)

Ref Expression
Hypotheses rspecbas.1 𝑆 = ( Spec ‘ 𝑅 )
rspectset.1 𝐼 = ( LIdeal ‘ 𝑅 )
rspectset.2 𝐽 = ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } )
Assertion rspectset ( 𝑅 ∈ Ring → 𝐽 = ( TopSet ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 rspecbas.1 𝑆 = ( Spec ‘ 𝑅 )
2 rspectset.1 𝐼 = ( LIdeal ‘ 𝑅 )
3 rspectset.2 𝐽 = ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } )
4 fvex ( PrmIdeal ‘ 𝑅 ) ∈ V
5 eqid ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) )
6 eqid ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) )
7 5 6 resstset ( ( PrmIdeal ‘ 𝑅 ) ∈ V → ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopSet ‘ ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) )
8 4 7 ax-mp ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopSet ‘ ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) )
9 eqid ( IDLsrg ‘ 𝑅 ) = ( IDLsrg ‘ 𝑅 )
10 9 2 3 idlsrgtset ( 𝑅 ∈ Ring → 𝐽 = ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) )
11 rspecval ( 𝑅 ∈ Ring → ( Spec ‘ 𝑅 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) )
12 1 11 syl5eq ( 𝑅 ∈ Ring → 𝑆 = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) )
13 12 fveq2d ( 𝑅 ∈ Ring → ( TopSet ‘ 𝑆 ) = ( TopSet ‘ ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) )
14 8 10 13 3eqtr4a ( 𝑅 ∈ Ring → 𝐽 = ( TopSet ‘ 𝑆 ) )