Step |
Hyp |
Ref |
Expression |
1 |
|
rspecbas.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
2 |
|
rspectset.1 |
⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) |
3 |
|
rspectset.2 |
⊢ 𝐽 = ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
4 |
|
fvex |
⊢ ( PrmIdeal ‘ 𝑅 ) ∈ V |
5 |
|
eqid |
⊢ ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) |
6 |
|
eqid |
⊢ ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) |
7 |
5 6
|
resstset |
⊢ ( ( PrmIdeal ‘ 𝑅 ) ∈ V → ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopSet ‘ ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) ) |
8 |
4 7
|
ax-mp |
⊢ ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopSet ‘ ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) |
9 |
|
eqid |
⊢ ( IDLsrg ‘ 𝑅 ) = ( IDLsrg ‘ 𝑅 ) |
10 |
9 2 3
|
idlsrgtset |
⊢ ( 𝑅 ∈ Ring → 𝐽 = ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
11 |
|
rspecval |
⊢ ( 𝑅 ∈ Ring → ( Spec ‘ 𝑅 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) |
12 |
1 11
|
syl5eq |
⊢ ( 𝑅 ∈ Ring → 𝑆 = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( TopSet ‘ 𝑆 ) = ( TopSet ‘ ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) ) |
14 |
8 10 13
|
3eqtr4a |
⊢ ( 𝑅 ∈ Ring → 𝐽 = ( TopSet ‘ 𝑆 ) ) |