Metamath Proof Explorer


Definition df-sgrp2

Description: Asemigroup is a magma with an associative operation. Definition in section II.1 of Bruck p. 23, or of an "associative magma" in definition 5 of BourbakiAlg1 p. 4, or of a semigroup in section 1.3 of Hall p. 7. (Contributed by AV, 6-Jan-2020)

Ref Expression
Assertion df-sgrp2
|- SGrpALT = { g e. MgmALT | ( +g ` g ) assLaw ( Base ` g ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 csgrp2
 |-  SGrpALT
1 vg
 |-  g
2 cmgm2
 |-  MgmALT
3 cplusg
 |-  +g
4 1 cv
 |-  g
5 4 3 cfv
 |-  ( +g ` g )
6 casslaw
 |-  assLaw
7 cbs
 |-  Base
8 4 7 cfv
 |-  ( Base ` g )
9 5 8 6 wbr
 |-  ( +g ` g ) assLaw ( Base ` g )
10 9 1 2 crab
 |-  { g e. MgmALT | ( +g ` g ) assLaw ( Base ` g ) }
11 0 10 wceq
 |-  SGrpALT = { g e. MgmALT | ( +g ` g ) assLaw ( Base ` g ) }