Description: Acommutative semigroup is a semigroup with a commutative operation. (Contributed by AV, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-csgrp2 | |- CSGrpALT = { g e. SGrpALT | ( +g ` g ) comLaw ( Base ` g ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccsgrp2 | |- CSGrpALT |
|
| 1 | vg | |- g |
|
| 2 | csgrp2 | |- SGrpALT |
|
| 3 | cplusg | |- +g |
|
| 4 | 1 | cv | |- g |
| 5 | 4 3 | cfv | |- ( +g ` g ) |
| 6 | ccomlaw | |- comLaw |
|
| 7 | cbs | |- Base |
|
| 8 | 4 7 | cfv | |- ( Base ` g ) |
| 9 | 5 8 6 | wbr | |- ( +g ` g ) comLaw ( Base ` g ) |
| 10 | 9 1 2 | crab | |- { g e. SGrpALT | ( +g ` g ) comLaw ( Base ` g ) } |
| 11 | 0 10 | wceq | |- CSGrpALT = { g e. SGrpALT | ( +g ` g ) comLaw ( Base ` g ) } |