Metamath Proof Explorer


Definition df-csgrp2

Description: Acommutative semigroup is a semigroup with a commutative operation. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion df-csgrp2
|- CSGrpALT = { g e. SGrpALT | ( +g ` g ) comLaw ( Base ` g ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccsgrp2
 |-  CSGrpALT
1 vg
 |-  g
2 csgrp2
 |-  SGrpALT
3 cplusg
 |-  +g
4 1 cv
 |-  g
5 4 3 cfv
 |-  ( +g ` g )
6 ccomlaw
 |-  comLaw
7 cbs
 |-  Base
8 4 7 cfv
 |-  ( Base ` g )
9 5 8 6 wbr
 |-  ( +g ` g ) comLaw ( Base ` g )
10 9 1 2 crab
 |-  { g e. SGrpALT | ( +g ` g ) comLaw ( Base ` g ) }
11 0 10 wceq
 |-  CSGrpALT = { g e. SGrpALT | ( +g ` g ) comLaw ( Base ` g ) }