Metamath Proof Explorer


Definition df-csgrp2

Description: Acommutative semigroup is a semigroup with a commutative operation. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion df-csgrp2 CSGrpALT = g SGrpALT | + g comLaw Base g

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccsgrp2 class CSGrpALT
1 vg setvar g
2 csgrp2 class SGrpALT
3 cplusg class + 𝑔
4 1 cv setvar g
5 4 3 cfv class + g
6 ccomlaw class comLaw
7 cbs class Base
8 4 7 cfv class Base g
9 5 8 6 wbr wff + g comLaw Base g
10 9 1 2 crab class g SGrpALT | + g comLaw Base g
11 0 10 wceq wff CSGrpALT = g SGrpALT | + g comLaw Base g