Description: Acommutative semigroup is a semigroup with a commutative operation. (Contributed by AV, 20-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-csgrp2 | ⊢ CSGrpALT = { 𝑔 ∈ SGrpALT ∣ ( +g ‘ 𝑔 ) comLaw ( Base ‘ 𝑔 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccsgrp2 | ⊢ CSGrpALT | |
1 | vg | ⊢ 𝑔 | |
2 | csgrp2 | ⊢ SGrpALT | |
3 | cplusg | ⊢ +g | |
4 | 1 | cv | ⊢ 𝑔 |
5 | 4 3 | cfv | ⊢ ( +g ‘ 𝑔 ) |
6 | ccomlaw | ⊢ comLaw | |
7 | cbs | ⊢ Base | |
8 | 4 7 | cfv | ⊢ ( Base ‘ 𝑔 ) |
9 | 5 8 6 | wbr | ⊢ ( +g ‘ 𝑔 ) comLaw ( Base ‘ 𝑔 ) |
10 | 9 1 2 | crab | ⊢ { 𝑔 ∈ SGrpALT ∣ ( +g ‘ 𝑔 ) comLaw ( Base ‘ 𝑔 ) } |
11 | 0 10 | wceq | ⊢ CSGrpALT = { 𝑔 ∈ SGrpALT ∣ ( +g ‘ 𝑔 ) comLaw ( Base ‘ 𝑔 ) } |