Description: Acommutative semigroup is a semigroup with a commutative operation. (Contributed by AV, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-csgrp2 | ⊢ CSGrpALT = { 𝑔 ∈ SGrpALT ∣ ( +g ‘ 𝑔 ) comLaw ( Base ‘ 𝑔 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccsgrp2 | ⊢ CSGrpALT | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | csgrp2 | ⊢ SGrpALT | |
| 3 | cplusg | ⊢ +g | |
| 4 | 1 | cv | ⊢ 𝑔 |
| 5 | 4 3 | cfv | ⊢ ( +g ‘ 𝑔 ) |
| 6 | ccomlaw | ⊢ comLaw | |
| 7 | cbs | ⊢ Base | |
| 8 | 4 7 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 9 | 5 8 6 | wbr | ⊢ ( +g ‘ 𝑔 ) comLaw ( Base ‘ 𝑔 ) |
| 10 | 9 1 2 | crab | ⊢ { 𝑔 ∈ SGrpALT ∣ ( +g ‘ 𝑔 ) comLaw ( Base ‘ 𝑔 ) } |
| 11 | 0 10 | wceq | ⊢ CSGrpALT = { 𝑔 ∈ SGrpALT ∣ ( +g ‘ 𝑔 ) comLaw ( Base ‘ 𝑔 ) } |