Metamath Proof Explorer


Definition df-csgrp2

Description: Acommutative semigroup is a semigroup with a commutative operation. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion df-csgrp2 CSGrpALT = { 𝑔 ∈ SGrpALT ∣ ( +g𝑔 ) comLaw ( Base ‘ 𝑔 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccsgrp2 CSGrpALT
1 vg 𝑔
2 csgrp2 SGrpALT
3 cplusg +g
4 1 cv 𝑔
5 4 3 cfv ( +g𝑔 )
6 ccomlaw comLaw
7 cbs Base
8 4 7 cfv ( Base ‘ 𝑔 )
9 5 8 6 wbr ( +g𝑔 ) comLaw ( Base ‘ 𝑔 )
10 9 1 2 crab { 𝑔 ∈ SGrpALT ∣ ( +g𝑔 ) comLaw ( Base ‘ 𝑔 ) }
11 0 10 wceq CSGrpALT = { 𝑔 ∈ SGrpALT ∣ ( +g𝑔 ) comLaw ( Base ‘ 𝑔 ) }