| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csph |  |-  Sphere | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  w | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` w ) | 
						
							| 7 |  | vr |  |-  r | 
						
							| 8 |  | cc0 |  |-  0 | 
						
							| 9 |  | cicc |  |-  [,] | 
						
							| 10 |  | cpnf |  |-  +oo | 
						
							| 11 | 8 10 9 | co |  |-  ( 0 [,] +oo ) | 
						
							| 12 |  | vp |  |-  p | 
						
							| 13 | 12 | cv |  |-  p | 
						
							| 14 |  | cds |  |-  dist | 
						
							| 15 | 5 14 | cfv |  |-  ( dist ` w ) | 
						
							| 16 | 3 | cv |  |-  x | 
						
							| 17 | 13 16 15 | co |  |-  ( p ( dist ` w ) x ) | 
						
							| 18 | 7 | cv |  |-  r | 
						
							| 19 | 17 18 | wceq |  |-  ( p ( dist ` w ) x ) = r | 
						
							| 20 | 19 12 6 | crab |  |-  { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } | 
						
							| 21 | 3 7 6 11 20 | cmpo |  |-  ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) | 
						
							| 22 | 1 2 21 | cmpt |  |-  ( w e. _V |-> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) ) | 
						
							| 23 | 0 22 | wceq |  |-  Sphere = ( w e. _V |-> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) ) |