Metamath Proof Explorer


Definition df-sph

Description: Definition of spheres for given centers and radii in a metric space (or more generally, in a distance space, see distspace , or even in any extended structure having a base set and a distance function into the real numbers. (Contributed by AV, 14-Jan-2023)

Ref Expression
Assertion df-sph
|- Sphere = ( w e. _V |-> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csph
 |-  Sphere
1 vw
 |-  w
2 cvv
 |-  _V
3 vx
 |-  x
4 cbs
 |-  Base
5 1 cv
 |-  w
6 5 4 cfv
 |-  ( Base ` w )
7 vr
 |-  r
8 cc0
 |-  0
9 cicc
 |-  [,]
10 cpnf
 |-  +oo
11 8 10 9 co
 |-  ( 0 [,] +oo )
12 vp
 |-  p
13 12 cv
 |-  p
14 cds
 |-  dist
15 5 14 cfv
 |-  ( dist ` w )
16 3 cv
 |-  x
17 13 16 15 co
 |-  ( p ( dist ` w ) x )
18 7 cv
 |-  r
19 17 18 wceq
 |-  ( p ( dist ` w ) x ) = r
20 19 12 6 crab
 |-  { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r }
21 3 7 6 11 20 cmpo
 |-  ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } )
22 1 2 21 cmpt
 |-  ( w e. _V |-> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) )
23 0 22 wceq
 |-  Sphere = ( w e. _V |-> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) )