Step |
Hyp |
Ref |
Expression |
0 |
|
csph |
|- Sphere |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vx |
|- x |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- w |
6 |
5 4
|
cfv |
|- ( Base ` w ) |
7 |
|
vr |
|- r |
8 |
|
cc0 |
|- 0 |
9 |
|
cicc |
|- [,] |
10 |
|
cpnf |
|- +oo |
11 |
8 10 9
|
co |
|- ( 0 [,] +oo ) |
12 |
|
vp |
|- p |
13 |
12
|
cv |
|- p |
14 |
|
cds |
|- dist |
15 |
5 14
|
cfv |
|- ( dist ` w ) |
16 |
3
|
cv |
|- x |
17 |
13 16 15
|
co |
|- ( p ( dist ` w ) x ) |
18 |
7
|
cv |
|- r |
19 |
17 18
|
wceq |
|- ( p ( dist ` w ) x ) = r |
20 |
19 12 6
|
crab |
|- { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } |
21 |
3 7 6 11 20
|
cmpo |
|- ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) |
22 |
1 2 21
|
cmpt |
|- ( w e. _V |-> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) ) |
23 |
0 22
|
wceq |
|- Sphere = ( w e. _V |-> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) ) |