| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csph | ⊢ Sphere | 
						
							| 1 |  | vw | ⊢ 𝑤 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑤 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) | 
						
							| 7 |  | vr | ⊢ 𝑟 | 
						
							| 8 |  | cc0 | ⊢ 0 | 
						
							| 9 |  | cicc | ⊢ [,] | 
						
							| 10 |  | cpnf | ⊢ +∞ | 
						
							| 11 | 8 10 9 | co | ⊢ ( 0 [,] +∞ ) | 
						
							| 12 |  | vp | ⊢ 𝑝 | 
						
							| 13 | 12 | cv | ⊢ 𝑝 | 
						
							| 14 |  | cds | ⊢ dist | 
						
							| 15 | 5 14 | cfv | ⊢ ( dist ‘ 𝑤 ) | 
						
							| 16 | 3 | cv | ⊢ 𝑥 | 
						
							| 17 | 13 16 15 | co | ⊢ ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) | 
						
							| 18 | 7 | cv | ⊢ 𝑟 | 
						
							| 19 | 17 18 | wceq | ⊢ ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 )  =  𝑟 | 
						
							| 20 | 19 12 6 | crab | ⊢ { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 )  =  𝑟 } | 
						
							| 21 | 3 7 6 11 20 | cmpo | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑟  ∈  ( 0 [,] +∞ )  ↦  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 )  =  𝑟 } ) | 
						
							| 22 | 1 2 21 | cmpt | ⊢ ( 𝑤  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑟  ∈  ( 0 [,] +∞ )  ↦  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 )  =  𝑟 } ) ) | 
						
							| 23 | 0 22 | wceq | ⊢ Sphere  =  ( 𝑤  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑟  ∈  ( 0 [,] +∞ )  ↦  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 )  =  𝑟 } ) ) |