| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lines.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lines.l | ⊢ 𝐿  =  ( LineM ‘ 𝑊 ) | 
						
							| 3 |  | lines.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | lines.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | lines.p | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | lines.a | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 7 |  | lines.m | ⊢  −   =  ( -g ‘ 𝑆 ) | 
						
							| 8 |  | lines.1 | ⊢  1   =  ( 1r ‘ 𝑆 ) | 
						
							| 9 |  | df-line | ⊢ LineM  =  ( 𝑤  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( ( Base ‘ 𝑤 )  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) } ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑊  =  𝑤  →  ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑤 ) ) | 
						
							| 11 | 1 10 | eqtrid | ⊢ ( 𝑊  =  𝑤  →  𝐵  =  ( Base ‘ 𝑤 ) ) | 
						
							| 12 | 11 | difeq1d | ⊢ ( 𝑊  =  𝑤  →  ( 𝐵  ∖  { 𝑥 } )  =  ( ( Base ‘ 𝑤 )  ∖  { 𝑥 } ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑊  =  𝑤  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑤 ) ) | 
						
							| 14 | 3 13 | eqtrid | ⊢ ( 𝑊  =  𝑤  →  𝑆  =  ( Scalar ‘ 𝑤 ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑊  =  𝑤  →  ( Base ‘ 𝑆 )  =  ( Base ‘ ( Scalar ‘ 𝑤 ) ) ) | 
						
							| 16 | 4 15 | eqtrid | ⊢ ( 𝑊  =  𝑤  →  𝐾  =  ( Base ‘ ( Scalar ‘ 𝑤 ) ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑊  =  𝑤  →  ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑤 ) ) | 
						
							| 18 | 6 17 | eqtrid | ⊢ ( 𝑊  =  𝑤  →   +   =  ( +g ‘ 𝑤 ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑊  =  𝑤  →  (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑤 ) ) | 
						
							| 20 | 5 19 | eqtrid | ⊢ ( 𝑊  =  𝑤  →   ·   =  (  ·𝑠  ‘ 𝑤 ) ) | 
						
							| 21 | 3 | fveq2i | ⊢ ( -g ‘ 𝑆 )  =  ( -g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 22 | 7 21 | eqtri | ⊢  −   =  ( -g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 23 |  | 2fveq3 | ⊢ ( 𝑊  =  𝑤  →  ( -g ‘ ( Scalar ‘ 𝑊 ) )  =  ( -g ‘ ( Scalar ‘ 𝑤 ) ) ) | 
						
							| 24 | 22 23 | eqtrid | ⊢ ( 𝑊  =  𝑤  →   −   =  ( -g ‘ ( Scalar ‘ 𝑤 ) ) ) | 
						
							| 25 | 3 | fveq2i | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 26 | 8 25 | eqtri | ⊢  1   =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 27 |  | 2fveq3 | ⊢ ( 𝑊  =  𝑤  →  ( 1r ‘ ( Scalar ‘ 𝑊 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ) | 
						
							| 28 | 26 27 | eqtrid | ⊢ ( 𝑊  =  𝑤  →   1   =  ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ) | 
						
							| 29 |  | eqidd | ⊢ ( 𝑊  =  𝑤  →  𝑡  =  𝑡 ) | 
						
							| 30 | 24 28 29 | oveq123d | ⊢ ( 𝑊  =  𝑤  →  (  1   −  𝑡 )  =  ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ) | 
						
							| 31 |  | eqidd | ⊢ ( 𝑊  =  𝑤  →  𝑥  =  𝑥 ) | 
						
							| 32 | 20 30 31 | oveq123d | ⊢ ( 𝑊  =  𝑤  →  ( (  1   −  𝑡 )  ·  𝑥 )  =  ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ) | 
						
							| 33 | 20 | oveqd | ⊢ ( 𝑊  =  𝑤  →  ( 𝑡  ·  𝑦 )  =  ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) | 
						
							| 34 | 18 32 33 | oveq123d | ⊢ ( 𝑊  =  𝑤  →  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) )  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) ) | 
						
							| 35 | 34 | eqeq2d | ⊢ ( 𝑊  =  𝑤  →  ( 𝑝  =  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) )  ↔  𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) ) ) | 
						
							| 36 | 16 35 | rexeqbidv | ⊢ ( 𝑊  =  𝑤  →  ( ∃ 𝑡  ∈  𝐾 𝑝  =  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) )  ↔  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) ) ) | 
						
							| 37 | 11 36 | rabeqbidv | ⊢ ( 𝑊  =  𝑤  →  { 𝑝  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝐾 𝑝  =  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) }  =  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) } ) | 
						
							| 38 | 11 12 37 | mpoeq123dv | ⊢ ( 𝑊  =  𝑤  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  ( 𝐵  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝐾 𝑝  =  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } )  =  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( ( Base ‘ 𝑤 )  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) } ) ) | 
						
							| 39 | 38 | eqcomd | ⊢ ( 𝑊  =  𝑤  →  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( ( Base ‘ 𝑤 )  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  ( 𝐵  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝐾 𝑝  =  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) ) | 
						
							| 40 | 39 | eqcoms | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( ( Base ‘ 𝑤 )  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  ( 𝐵  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝐾 𝑝  =  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) ) | 
						
							| 41 |  | elex | ⊢ ( 𝑊  ∈  𝑉  →  𝑊  ∈  V ) | 
						
							| 42 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 43 | 42 | difexi | ⊢ ( 𝐵  ∖  { 𝑥 } )  ∈  V | 
						
							| 44 | 42 43 | mpoex | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  ( 𝐵  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝐾 𝑝  =  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } )  ∈  V | 
						
							| 45 | 44 | a1i | ⊢ ( 𝑊  ∈  𝑉  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  ( 𝐵  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝐾 𝑝  =  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } )  ∈  V ) | 
						
							| 46 | 9 40 41 45 | fvmptd3 | ⊢ ( 𝑊  ∈  𝑉  →  ( LineM ‘ 𝑊 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  ( 𝐵  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝐾 𝑝  =  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) ) | 
						
							| 47 | 2 46 | eqtrid | ⊢ ( 𝑊  ∈  𝑉  →  𝐿  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  ( 𝐵  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝐾 𝑝  =  ( ( (  1   −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) ) |