Step |
Hyp |
Ref |
Expression |
1 |
|
lines.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
lines.l |
⊢ 𝐿 = ( LineM ‘ 𝑊 ) |
3 |
|
lines.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
4 |
|
lines.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
5 |
|
lines.p |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
lines.a |
⊢ + = ( +g ‘ 𝑊 ) |
7 |
|
lines.m |
⊢ − = ( -g ‘ 𝑆 ) |
8 |
|
lines.1 |
⊢ 1 = ( 1r ‘ 𝑆 ) |
9 |
|
df-line |
⊢ LineM = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( ( Base ‘ 𝑤 ) ∖ { 𝑥 } ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) } ) ) |
10 |
|
fveq2 |
⊢ ( 𝑊 = 𝑤 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑤 ) ) |
11 |
1 10
|
syl5eq |
⊢ ( 𝑊 = 𝑤 → 𝐵 = ( Base ‘ 𝑤 ) ) |
12 |
11
|
difeq1d |
⊢ ( 𝑊 = 𝑤 → ( 𝐵 ∖ { 𝑥 } ) = ( ( Base ‘ 𝑤 ) ∖ { 𝑥 } ) ) |
13 |
|
fveq2 |
⊢ ( 𝑊 = 𝑤 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑤 ) ) |
14 |
3 13
|
syl5eq |
⊢ ( 𝑊 = 𝑤 → 𝑆 = ( Scalar ‘ 𝑤 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑊 = 𝑤 → ( Base ‘ 𝑆 ) = ( Base ‘ ( Scalar ‘ 𝑤 ) ) ) |
16 |
4 15
|
syl5eq |
⊢ ( 𝑊 = 𝑤 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑤 ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑊 = 𝑤 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑤 ) ) |
18 |
6 17
|
syl5eq |
⊢ ( 𝑊 = 𝑤 → + = ( +g ‘ 𝑤 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑊 = 𝑤 → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑤 ) ) |
20 |
5 19
|
syl5eq |
⊢ ( 𝑊 = 𝑤 → · = ( ·𝑠 ‘ 𝑤 ) ) |
21 |
3
|
fveq2i |
⊢ ( -g ‘ 𝑆 ) = ( -g ‘ ( Scalar ‘ 𝑊 ) ) |
22 |
7 21
|
eqtri |
⊢ − = ( -g ‘ ( Scalar ‘ 𝑊 ) ) |
23 |
|
2fveq3 |
⊢ ( 𝑊 = 𝑤 → ( -g ‘ ( Scalar ‘ 𝑊 ) ) = ( -g ‘ ( Scalar ‘ 𝑤 ) ) ) |
24 |
22 23
|
syl5eq |
⊢ ( 𝑊 = 𝑤 → − = ( -g ‘ ( Scalar ‘ 𝑤 ) ) ) |
25 |
3
|
fveq2i |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
26 |
8 25
|
eqtri |
⊢ 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
27 |
|
2fveq3 |
⊢ ( 𝑊 = 𝑤 → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ) |
28 |
26 27
|
syl5eq |
⊢ ( 𝑊 = 𝑤 → 1 = ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ) |
29 |
|
eqidd |
⊢ ( 𝑊 = 𝑤 → 𝑡 = 𝑡 ) |
30 |
24 28 29
|
oveq123d |
⊢ ( 𝑊 = 𝑤 → ( 1 − 𝑡 ) = ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ) |
31 |
|
eqidd |
⊢ ( 𝑊 = 𝑤 → 𝑥 = 𝑥 ) |
32 |
20 30 31
|
oveq123d |
⊢ ( 𝑊 = 𝑤 → ( ( 1 − 𝑡 ) · 𝑥 ) = ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ) |
33 |
20
|
oveqd |
⊢ ( 𝑊 = 𝑤 → ( 𝑡 · 𝑦 ) = ( 𝑡 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) |
34 |
18 32 33
|
oveq123d |
⊢ ( 𝑊 = 𝑤 → ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) ) |
35 |
34
|
eqeq2d |
⊢ ( 𝑊 = 𝑤 → ( 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) ↔ 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) ) ) |
36 |
16 35
|
rexeqbidv |
⊢ ( 𝑊 = 𝑤 → ( ∃ 𝑡 ∈ 𝐾 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) ↔ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) ) ) |
37 |
11 36
|
rabeqbidv |
⊢ ( 𝑊 = 𝑤 → { 𝑝 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝐾 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } = { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) } ) |
38 |
11 12 37
|
mpoeq123dv |
⊢ ( 𝑊 = 𝑤 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝐾 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( ( Base ‘ 𝑤 ) ∖ { 𝑥 } ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) } ) ) |
39 |
38
|
eqcomd |
⊢ ( 𝑊 = 𝑤 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( ( Base ‘ 𝑤 ) ∖ { 𝑥 } ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝐾 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) ) |
40 |
39
|
eqcoms |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( ( Base ‘ 𝑤 ) ∖ { 𝑥 } ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝐾 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) ) |
41 |
|
elex |
⊢ ( 𝑊 ∈ 𝑉 → 𝑊 ∈ V ) |
42 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
43 |
42
|
difexi |
⊢ ( 𝐵 ∖ { 𝑥 } ) ∈ V |
44 |
42 43
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝐾 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) ∈ V |
45 |
44
|
a1i |
⊢ ( 𝑊 ∈ 𝑉 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝐾 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) ∈ V ) |
46 |
9 40 41 45
|
fvmptd3 |
⊢ ( 𝑊 ∈ 𝑉 → ( LineM ‘ 𝑊 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝐾 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) ) |
47 |
2 46
|
syl5eq |
⊢ ( 𝑊 ∈ 𝑉 → 𝐿 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝐾 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) ) |