Metamath Proof Explorer


Theorem lines

Description: The lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023)

Ref Expression
Hypotheses lines.b 𝐵 = ( Base ‘ 𝑊 )
lines.l 𝐿 = ( LineM𝑊 )
lines.s 𝑆 = ( Scalar ‘ 𝑊 )
lines.k 𝐾 = ( Base ‘ 𝑆 )
lines.p · = ( ·𝑠𝑊 )
lines.a + = ( +g𝑊 )
lines.m = ( -g𝑆 )
lines.1 1 = ( 1r𝑆 )
Assertion lines ( 𝑊𝑉𝐿 = ( 𝑥𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝𝐵 ∣ ∃ 𝑡𝐾 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) )

Proof

Step Hyp Ref Expression
1 lines.b 𝐵 = ( Base ‘ 𝑊 )
2 lines.l 𝐿 = ( LineM𝑊 )
3 lines.s 𝑆 = ( Scalar ‘ 𝑊 )
4 lines.k 𝐾 = ( Base ‘ 𝑆 )
5 lines.p · = ( ·𝑠𝑊 )
6 lines.a + = ( +g𝑊 )
7 lines.m = ( -g𝑆 )
8 lines.1 1 = ( 1r𝑆 )
9 df-line LineM = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( ( Base ‘ 𝑤 ) ∖ { 𝑥 } ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) ( 𝑡 ( ·𝑠𝑤 ) 𝑦 ) ) } ) )
10 fveq2 ( 𝑊 = 𝑤 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑤 ) )
11 1 10 syl5eq ( 𝑊 = 𝑤𝐵 = ( Base ‘ 𝑤 ) )
12 11 difeq1d ( 𝑊 = 𝑤 → ( 𝐵 ∖ { 𝑥 } ) = ( ( Base ‘ 𝑤 ) ∖ { 𝑥 } ) )
13 fveq2 ( 𝑊 = 𝑤 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑤 ) )
14 3 13 syl5eq ( 𝑊 = 𝑤𝑆 = ( Scalar ‘ 𝑤 ) )
15 14 fveq2d ( 𝑊 = 𝑤 → ( Base ‘ 𝑆 ) = ( Base ‘ ( Scalar ‘ 𝑤 ) ) )
16 4 15 syl5eq ( 𝑊 = 𝑤𝐾 = ( Base ‘ ( Scalar ‘ 𝑤 ) ) )
17 fveq2 ( 𝑊 = 𝑤 → ( +g𝑊 ) = ( +g𝑤 ) )
18 6 17 syl5eq ( 𝑊 = 𝑤+ = ( +g𝑤 ) )
19 fveq2 ( 𝑊 = 𝑤 → ( ·𝑠𝑊 ) = ( ·𝑠𝑤 ) )
20 5 19 syl5eq ( 𝑊 = 𝑤· = ( ·𝑠𝑤 ) )
21 3 fveq2i ( -g𝑆 ) = ( -g ‘ ( Scalar ‘ 𝑊 ) )
22 7 21 eqtri = ( -g ‘ ( Scalar ‘ 𝑊 ) )
23 2fveq3 ( 𝑊 = 𝑤 → ( -g ‘ ( Scalar ‘ 𝑊 ) ) = ( -g ‘ ( Scalar ‘ 𝑤 ) ) )
24 22 23 syl5eq ( 𝑊 = 𝑤 = ( -g ‘ ( Scalar ‘ 𝑤 ) ) )
25 3 fveq2i ( 1r𝑆 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) )
26 8 25 eqtri 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) )
27 2fveq3 ( 𝑊 = 𝑤 → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑤 ) ) )
28 26 27 syl5eq ( 𝑊 = 𝑤1 = ( 1r ‘ ( Scalar ‘ 𝑤 ) ) )
29 eqidd ( 𝑊 = 𝑤𝑡 = 𝑡 )
30 24 28 29 oveq123d ( 𝑊 = 𝑤 → ( 1 𝑡 ) = ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) )
31 eqidd ( 𝑊 = 𝑤𝑥 = 𝑥 )
32 20 30 31 oveq123d ( 𝑊 = 𝑤 → ( ( 1 𝑡 ) · 𝑥 ) = ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠𝑤 ) 𝑥 ) )
33 20 oveqd ( 𝑊 = 𝑤 → ( 𝑡 · 𝑦 ) = ( 𝑡 ( ·𝑠𝑤 ) 𝑦 ) )
34 18 32 33 oveq123d ( 𝑊 = 𝑤 → ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) ( 𝑡 ( ·𝑠𝑤 ) 𝑦 ) ) )
35 34 eqeq2d ( 𝑊 = 𝑤 → ( 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) ↔ 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) ( 𝑡 ( ·𝑠𝑤 ) 𝑦 ) ) ) )
36 16 35 rexeqbidv ( 𝑊 = 𝑤 → ( ∃ 𝑡𝐾 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) ↔ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) ( 𝑡 ( ·𝑠𝑤 ) 𝑦 ) ) ) )
37 11 36 rabeqbidv ( 𝑊 = 𝑤 → { 𝑝𝐵 ∣ ∃ 𝑡𝐾 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } = { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) ( 𝑡 ( ·𝑠𝑤 ) 𝑦 ) ) } )
38 11 12 37 mpoeq123dv ( 𝑊 = 𝑤 → ( 𝑥𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝𝐵 ∣ ∃ 𝑡𝐾 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( ( Base ‘ 𝑤 ) ∖ { 𝑥 } ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) ( 𝑡 ( ·𝑠𝑤 ) 𝑦 ) ) } ) )
39 38 eqcomd ( 𝑊 = 𝑤 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( ( Base ‘ 𝑤 ) ∖ { 𝑥 } ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) ( 𝑡 ( ·𝑠𝑤 ) 𝑦 ) ) } ) = ( 𝑥𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝𝐵 ∣ ∃ 𝑡𝐾 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) )
40 39 eqcoms ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( ( Base ‘ 𝑤 ) ∖ { 𝑥 } ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑡 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝 = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) ( 𝑡 ( ·𝑠𝑤 ) 𝑦 ) ) } ) = ( 𝑥𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝𝐵 ∣ ∃ 𝑡𝐾 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) )
41 elex ( 𝑊𝑉𝑊 ∈ V )
42 1 fvexi 𝐵 ∈ V
43 42 difexi ( 𝐵 ∖ { 𝑥 } ) ∈ V
44 42 43 mpoex ( 𝑥𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝𝐵 ∣ ∃ 𝑡𝐾 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) ∈ V
45 44 a1i ( 𝑊𝑉 → ( 𝑥𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝𝐵 ∣ ∃ 𝑡𝐾 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) ∈ V )
46 9 40 41 45 fvmptd3 ( 𝑊𝑉 → ( LineM𝑊 ) = ( 𝑥𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝𝐵 ∣ ∃ 𝑡𝐾 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) )
47 2 46 syl5eq ( 𝑊𝑉𝐿 = ( 𝑥𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑝𝐵 ∣ ∃ 𝑡𝐾 𝑝 = ( ( ( 1 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) )