| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cline | ⊢ LineM | 
						
							| 1 |  | vw | ⊢ 𝑤 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑤 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) | 
						
							| 7 |  | vy | ⊢ 𝑦 | 
						
							| 8 | 3 | cv | ⊢ 𝑥 | 
						
							| 9 | 8 | csn | ⊢ { 𝑥 } | 
						
							| 10 | 6 9 | cdif | ⊢ ( ( Base ‘ 𝑤 )  ∖  { 𝑥 } ) | 
						
							| 11 |  | vp | ⊢ 𝑝 | 
						
							| 12 |  | vt | ⊢ 𝑡 | 
						
							| 13 |  | csca | ⊢ Scalar | 
						
							| 14 | 5 13 | cfv | ⊢ ( Scalar ‘ 𝑤 ) | 
						
							| 15 | 14 4 | cfv | ⊢ ( Base ‘ ( Scalar ‘ 𝑤 ) ) | 
						
							| 16 | 11 | cv | ⊢ 𝑝 | 
						
							| 17 |  | cur | ⊢ 1r | 
						
							| 18 | 14 17 | cfv | ⊢ ( 1r ‘ ( Scalar ‘ 𝑤 ) ) | 
						
							| 19 |  | csg | ⊢ -g | 
						
							| 20 | 14 19 | cfv | ⊢ ( -g ‘ ( Scalar ‘ 𝑤 ) ) | 
						
							| 21 | 12 | cv | ⊢ 𝑡 | 
						
							| 22 | 18 21 20 | co | ⊢ ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) | 
						
							| 23 |  | cvsca | ⊢  ·𝑠 | 
						
							| 24 | 5 23 | cfv | ⊢ (  ·𝑠  ‘ 𝑤 ) | 
						
							| 25 | 22 8 24 | co | ⊢ ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) | 
						
							| 26 |  | cplusg | ⊢ +g | 
						
							| 27 | 5 26 | cfv | ⊢ ( +g ‘ 𝑤 ) | 
						
							| 28 | 7 | cv | ⊢ 𝑦 | 
						
							| 29 | 21 28 24 | co | ⊢ ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) | 
						
							| 30 | 25 29 27 | co | ⊢ ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) | 
						
							| 31 | 16 30 | wceq | ⊢ 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) | 
						
							| 32 | 31 12 15 | wrex | ⊢ ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) | 
						
							| 33 | 32 11 6 | crab | ⊢ { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) } | 
						
							| 34 | 3 7 6 10 33 | cmpo | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( ( Base ‘ 𝑤 )  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) } ) | 
						
							| 35 | 1 2 34 | cmpt | ⊢ ( 𝑤  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( ( Base ‘ 𝑤 )  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) } ) ) | 
						
							| 36 | 0 35 | wceq | ⊢ LineM  =  ( 𝑤  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( ( Base ‘ 𝑤 )  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝑤 ) ) ( -g ‘ ( Scalar ‘ 𝑤 ) ) 𝑡 ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) ( 𝑡 (  ·𝑠  ‘ 𝑤 ) 𝑦 ) ) } ) ) |